精英家教网 > 高中数学 > 题目详情
13.已知F1,F2是椭圆$\frac{x^2}{16}+\frac{y^2}{9}$=1的两焦点,P是椭圆第一象限的点.若∠F1PF2=60°,则P的坐标为$({\frac{{8\sqrt{7}}}{7},\frac{{3\sqrt{21}}}{7}})$.

分析 由椭圆的方程,设P点坐标,利用余弦定理求得|F1P|•|PF2|,根据三角形的面积公式求得面积S,利用三角形面积相等,即${S}_{△{F}_{1}P{F}_{2}}$=$\frac{1}{2}$丨F1F2|•y0,即可求得y0,代入椭圆方程,即可求得P点坐标.

解答 解:由椭圆$\frac{x^2}{16}+\frac{y^2}{9}$=1,
a=4,b=3,c=$\sqrt{7}$,
又∵P是椭圆第一象限的点(x0,y0),y0>0,∠F1PF2=60°,F1、F2为左右焦点,
∴|F1P|+|PF2|=2a=8,|F1F2|=2c=2$\sqrt{7}$,
∴|F1F2|2=|PF1|2+|PF2|2-2|F1P|•|PF2|cos60°,
=(|PF1|+|PF2|)2-2|F1P||PF2|-2|F1P|•|PF2|cos60°,
=64-3|F1P|•|PF2|,
∴64-3|F1P|•|PF2|=28,
∴|F1P|•|PF2|=12.
∴${S}_{△{F}_{1}P{F}_{2}}$=$\frac{1}{2}$|F1P|•|PF2|sin60°=3$\sqrt{3}$,
由${S}_{△{F}_{1}P{F}_{2}}$=$\frac{1}{2}$丨F1F2|•y0=3$\sqrt{3}$,
解得:y0=$\frac{3\sqrt{21}}{7}$,
将y0=$\frac{3\sqrt{21}}{7}$,代入椭圆方程,解得:x0=$\frac{8\sqrt{7}}{7}$,
∴P点坐标为:$({\frac{{8\sqrt{7}}}{7},\frac{{3\sqrt{21}}}{7}})$,
故答案为:$({\frac{{8\sqrt{7}}}{7},\frac{{3\sqrt{21}}}{7}})$.

点评 本题考查椭圆的标准方程及简单几何性质,考查余弦定理及三角形的面积公式,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在△ABC中,BC=4,AC、AB边上的中线长之和等于9.
(1)求△ABC重心M的轨迹方程;
(2)求顶点A的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设复数z=$\frac{2+i}{(1+i)^{2}}$(i为虚数单位),则z的虚部是(  )
A.-1B.1C.-iD.i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数$y=\frac{1}{{\sqrt{|x|-x}}}$的定义域为(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知A为双曲线C:$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1的右焦点,M、N为C上的点,若MN的长等于虚轴长的4倍,点B(-5,0)在线段MN上,则△AMN的周长为64.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列说法正确的是(  )
A.若“x=$\frac{π}{4}$,则tanx=1”的逆命题为真命题
B.在△ABC中,sinA>sinB的充要条件是A>B
C.函数f(x)=sinx+$\frac{4}{sinx}$,x∈(0,π)的最小值为4
D.?x∈R,使得sinx•cosx=$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.函数f(x)=(log2x-2)(log4x-$\frac{1}{2}$).
(1)当x∈[1,4]时.求该函数的值域;
(2)若f(x)>mlog4x对于x∈[4,16]恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知以椭圆$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{m}$=1(m>0)的焦点连线F1F2为直径的圆和该椭圆在第一象限相交于点P.若△PF1F2的面积为1,则m的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知实数a,b满足(a+bi)(2+i)=3-5i(其中i为虚数单位),则复数z=b-ai的共扼复数为(  )
A.-$\frac{13}{5}$+$\frac{1}{5}$iB.-$\frac{13}{5}$-$\frac{1}{5}$iC.$\frac{13}{5}$+$\frac{1}{5}$iD.$\frac{13}{5}$-$\frac{1}{5}$i

查看答案和解析>>

同步练习册答案