分析 由f(t)=1+(sint+cost)+sintcost,令m=sint+cost=$\sqrt{2}$sin(t+$\frac{π}{4}$)∈[-$\sqrt{2}$,$\sqrt{2}$],sintcost=$\frac{{m}^{2}-1}{2}$,则f(t)=1+m+$\frac{{m}^{2}-1}{2}$=$\frac{(m+1)^{2}}{2}$,运用二次函数的值域求法,可得最大值.
解答 解:f(t)=(1+sint)(1+cost)
=1+(sint+cost)+sintcost,
令m=sint+cost=$\sqrt{2}$sin(t+$\frac{π}{4}$)∈[-$\sqrt{2}$,$\sqrt{2}$],
即有m2=1+2sintcost,即sintcost=$\frac{{m}^{2}-1}{2}$,
则f(t)=1+m+$\frac{{m}^{2}-1}{2}$=$\frac{(m+1)^{2}}{2}$,
即有m=-1时,f(t)取得最小值0;
m=$\sqrt{2}$,即t=$\frac{π}{4}$时,f(t)取得最大值,且为$\frac{3+2\sqrt{2}}{2}$.
故答案为:$\frac{3+2\sqrt{2}}{2}$.
点评 本题考查可化为二次函数的最值的求法,注意运用三角换元和正弦函数的值域,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,4] | B. | (-∞,1)∪(1,4] | C. | [-2,2] | D. | (-1,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | a<c<b | C. | b<c<a | D. | b<a<c |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x0∈R,x${\;}_{0}^{2}$<0 | B. | ?x∈R,x${\;}_{0}^{2}$≤0 | C. | ?x∈R,x2<0 | D. | ?x∈R,x2≤0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com