精英家教网 > 高中数学 > 题目详情
17.在等比数列{an}中,a5=2,a7=8,则a6等于(  )
A.4B.5C.-4D.±4

分析 利用等比数列的通项公式求解.

解答 解:∵等比数列{an}中,a5=2,a7=8,
∴a62=a5a7=16,
∴a6=±4.
故选:D.

点评 本题考查等比数列的第6项的求法,是基础题,解题时要认真审题,注意等比数列的通项公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.下列函数是奇函数的是(  )
A.f(x)=x4B.f(x)=x+$\frac{1}{x}$C.f(x)=x3-1D.f(x)=$\frac{1}{{x}^{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{\begin{array}{l}{2{e}^{-x-1},x<-1}\\{(2a-1)x-2a,x≥-1}\end{array}\right.$若函数f(x)的值域为R,则实数a的取值范围为(  )
A.a≤-$\frac{1}{4}$B.a<$\frac{1}{2}$C.-$\frac{1}{4}$≤a<$\frac{1}{2}$D.a>$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{b}{x-a}$的图象过点A(0,-$\frac{3}{2}$),B(3,3).
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)判断函数f(x)在(2,+∞)上的单调性,并用单调性的定义加以证明;
(Ⅲ)若m,n∈(2,+∞)且函数f(x)在[m,n]上的值域为[1,3],求m+n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设a,b,c分别是△ABC中角A,B,C的对边
(1)若AB边上的中线CM=AB=2,求a+b的最大值;
(2)若AB边上的高h=$\frac{1}{2}c$,求$\frac{b}{a}+\frac{a}{b}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,已知a=4,B=60°,A=30°,解三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若变量x、y满足约束条件$\left\{\begin{array}{l}{x+2y≥0}\\{x-y≤0}\\{x-2y+2≥0}\end{array}\right.$,则z=2x-y+1的最小值等于(  )
A.-$\frac{5}{2}$B.-2C.-$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.将函数$y=sin(2x+\frac{π}{3})$的图象向右平移$\frac{π}{4}$个单位,再向上平移1个单位,所得函数图象对应的解析式为(  )
A.$y=sin(2x+\frac{π}{12})+1$B.$y=sin(2x-\frac{π}{12})+1$C.$y=sin(2x-\frac{π}{6})+1$D.$y=sin(2x+\frac{π}{6})+1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.当t∈[0,2π)时,函数f(t)=(1+sint)(1+cost)的最大值为$\frac{3+2\sqrt{2}}{2}$.

查看答案和解析>>

同步练习册答案