精英家教网 > 高中数学 > 题目详情
16.设$a={({\frac{2}{5}})^{\frac{3}{5}}}$,$b={({\frac{2}{5}})^{\frac{2}{5}}}$,$c={({\frac{3}{5}})^{\frac{2}{5}}}$,则(  )
A.a<b<cB.a<c<bC.b<c<aD.b<a<c

分析 根据指数函数y=${(\frac{2}{5})}^{x}$单调性得出${(\frac{2}{5})}^{\frac{3}{5}}$<${(\frac{2}{5})}^{\frac{2}{5}}$,再根据幂函数y=${x}^{\frac{2}{5}}$的单调性得出${(\frac{2}{5})}^{\frac{2}{5}}$<${(\frac{3}{5})}^{\frac{2}{5}}$,即可得出答案.

解答 解:∵指数函数y=${(\frac{2}{5})}^{x}$是定义域R上的减函数,且$\frac{2}{5}$<$\frac{3}{5}$,
∴${(\frac{2}{5})}^{\frac{3}{5}}$<${(\frac{2}{5})}^{\frac{2}{5}}$,
即a<b;
又幂函数y=${x}^{\frac{2}{5}}$在(0,+∞)上是单调增函数,且$\frac{2}{5}$<$\frac{3}{5}$,
∴${(\frac{2}{5})}^{\frac{2}{5}}$<${(\frac{3}{5})}^{\frac{2}{5}}$,
即b<c;
∴a<b<c.
故选:A.

点评 本题考查了指数函数与幂函数的图象与性质的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.将函数$y=sin(2x+\frac{π}{3})$的图象向右平移$\frac{π}{4}$个单位,再向上平移1个单位,所得函数图象对应的解析式为(  )
A.$y=sin(2x+\frac{π}{12})+1$B.$y=sin(2x-\frac{π}{12})+1$C.$y=sin(2x-\frac{π}{6})+1$D.$y=sin(2x+\frac{π}{6})+1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.当t∈[0,2π)时,函数f(t)=(1+sint)(1+cost)的最大值为$\frac{3+2\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.化简下列各式(写出化简过程)
(1)${(ln5)^0}+{(\frac{9}{4})^{0.5}}+\sqrt{{{(1-\sqrt{2})}^2}}-{2^{{{log}_4}2}}$;
(2)lg5•lg20+lg22.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[-M,M].
例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下结论:
①设函数f(x)的定义域为D,若对于任何实数b,存在a∈D,使得f(a)=b,则f(x)∈A;
②若函数f(x)∈B,则f(x)有最大值和最小值;
③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则(f(x)+g(x))∉B;
④若函数f(x)=aln(x+2)+$\frac{x}{{x}^{2}+1}$(x>-2,a∈R)有最大值,则f(x)∈B.
其中正确的是(  )
A.②③④B.①③④C.②③D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知集合A={x|x2-3x+2≤0},集合B={y|y=x2-2x+a},集合C={x|x2-ax-4≤0},命题p:A∩B≠∅,命题q:A⊆C.
(1)若命题p为假命题,求实数a的取值范围.
(2)若命题p∧q为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知直线l过抛物线E:y2=2px(p>0)的焦点F且与x垂直,l与E所围成的封闭图形的面积为24,若点P为抛物线E上任意一点,A(4,1),则|PA|+|PF|的最小值为(  )
A.6B.4+2$\sqrt{2}$C.7D.4+2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求函数的定义域:
(1)$y=\sqrt{{{log}_{\frac{1}{3}}}({3x-2})}$;
(2)f(x)=$\sqrt{\frac{{log}_{\frac{1}{2}}x-1}{4x-1}}$;
(3)f(x)=${log}_{(x+1)}(16{-4}^{x})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别F1(-c,0),F2(c,0),若双曲线上存在点P满足$\frac{a}{sin∠PF{{\;}_{1}F}_{2}}$=$\frac{c}{sin∠P{F}_{2}{F}_{1}}$1,则该曲线的离心率的取值范围为(  )
A.(1,$\sqrt{2}$+1)B.(1,$\sqrt{3}$)C.($\sqrt{3}$,+∞)D.($\sqrt{2}$+1,+∞)

查看答案和解析>>

同步练习册答案