精英家教网 > 高中数学 > 题目详情
6.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别F1(-c,0),F2(c,0),若双曲线上存在点P满足$\frac{a}{sin∠PF{{\;}_{1}F}_{2}}$=$\frac{c}{sin∠P{F}_{2}{F}_{1}}$1,则该曲线的离心率的取值范围为(  )
A.(1,$\sqrt{2}$+1)B.(1,$\sqrt{3}$)C.($\sqrt{3}$,+∞)D.($\sqrt{2}$+1,+∞)

分析 不防设点P(x,y)在右支曲线上,并注意到x≥a.利用正弦定理求得$\frac{|P{F}_{2}|}{|P{F}_{1}|}$=$\frac{a}{c}$,进而根据双曲线定义表示出|PF1|和|PF2|代入,可求得e的范围.

解答 解:不妨设P(x,y)在右支曲线上,此时x≥a,
双曲线上存在点P满足$\frac{a}{sin∠PF{{\;}_{1}F}_{2}}$=$\frac{c}{sin∠P{F}_{2}{F}_{1}}$,由正弦定理得$\frac{|P{F}_{2}|}{|P{F}_{1}|}$=$\frac{a}{c}$,
∵双曲线第二定义得:|PF1|=a+ex,|PF2|=ex-a,
∴$\frac{ex-a}{ex+a}$=$\frac{a}{c}$⇒x=$\frac{a(a+c)}{ec-ea}$>a,
分子分母同时除以a,得:$\frac{a+c}{{e}^{2}-e}$>a,
∴$\frac{1+e}{{e}^{2}-e}$>1解得1<e<$\sqrt{2}$+1,
故选:A.

点评 本题主要考查了双曲线的应用.考查了学生综合运用所学知识解决问题能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.设$a={({\frac{2}{5}})^{\frac{3}{5}}}$,$b={({\frac{2}{5}})^{\frac{2}{5}}}$,$c={({\frac{3}{5}})^{\frac{2}{5}}}$,则(  )
A.a<b<cB.a<c<bC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.命题“?x∈R,x2≥0”的否定是(  )
A.?x0∈R,x${\;}_{0}^{2}$<0B.?x∈R,x${\;}_{0}^{2}$≤0C.?x∈R,x2<0D.?x∈R,x2≤0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设直线ax-y+3=0与圆(x-1)2+(y-2)2=4有两个不同的交点A,B,且弦AB的长为2$\sqrt{3}$,则a等于0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设f(x)=$\frac{mx}{1+|x|}$,集合N={y|y=f(x),x∈[a,b]},若使得N=[a,b]的实数对(a,b)(a<b)恰好有3个,则实数m的取值范围是m>1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若直线m、n的方向向量分别为$\overrightarrow{a}$,$\overrightarrow{b}$,则“m∥n“是“$\overrightarrow{a}$∥$\overrightarrow{b}$“的(  )
A.充分非必要条件B.必要非充分条件
C.充分必要条件D.既非充分又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若不等式ln$\frac{1+{2}^{x}+(1-2a){4}^{x}}{4}$≥xln4对任意x∈(-∞,2]恒成立,则实数a的取值范围是(  )
A.[1,+∞)B.(-∞,2]C.(-∞,-$\frac{43}{32}$]D.[-$\frac{43}{32}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设a,b同号,且a2-2ab-9b2=0,求lg(a2+ab-6b2)-lg(a2+4ab-3b2)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知集合M满足{a,b}⊆M?{a,b,c,d,e},则满足条件的集合M有7个.

查看答案和解析>>

同步练习册答案