精英家教网 > 高中数学 > 题目详情
16.已知集合M满足{a,b}⊆M?{a,b,c,d,e},则满足条件的集合M有7个.

分析 根据集合包含关系的定义,将满足条件的集合逐个列出,即可得到本题答案.

解答 解:根据子集的定义,可得集合M必定含有a、b两个元素,而且含有c,d,e的至多两个元素.
因此,满足条件集合M满足{a,b}⊆M?{a,b,c,d,e}的集合M有:
{a,b},{a,b,c},{a,b,d},{a,b,e},
{a,b,c,d},{a,b,d,e},{a,b,c,e},共7个.
故答案为:7.

点评 本题给出集合的包含关系,求满足条件集合M的个数.考查了集合的包含关系的理解和子集的概念等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别F1(-c,0),F2(c,0),若双曲线上存在点P满足$\frac{a}{sin∠PF{{\;}_{1}F}_{2}}$=$\frac{c}{sin∠P{F}_{2}{F}_{1}}$1,则该曲线的离心率的取值范围为(  )
A.(1,$\sqrt{2}$+1)B.(1,$\sqrt{3}$)C.($\sqrt{3}$,+∞)D.($\sqrt{2}$+1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知方程x2+y2+4x-2y-4=0,则x+y的最大值为-1+3$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.化简:$\frac{cos180°sin(180°+α)+sin(-α)-tan(180°+α)}{tan(180°+α)+cos(-α)+cos(180°-α)}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.“α是第二象限角“是“sinαcosα<0”的(  )
A.充分不必要条件B.不要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.数列{an}通项公式为an=n+2n,求数列{an}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=sin(2x+$\frac{π}{3}$)的单调递增区间为[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],k∈Z,函数f(x)=sin(-2x+$\frac{π}{3}$)的单调增区间为[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],k∈Z,函数f(x)=cos(-2x+$\frac{π}{3}$)的单调增区间[kπ-$\frac{2π}{3}$,kπ-$\frac{π}{6}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.圆x2+y2+6y-6x+14=0关于原点对称的圆上一点到y轴取最近距离时的点的坐标为(  )
A.(1,3)B.(-1,2)C.(-1,3)D.(-1,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列基本不等式的应用正确的是(  )
A.若a、b∈R,则$\frac{b}{a}$+$\frac{a}{b}$≥2$\sqrt{\frac{b}{a}•\frac{a}{b}}$=2
B.y=lgx+$\frac{1}{lgx}$≥2$\sqrt{lgx•\frac{1}{lgx}}$=2
C.y=3x+3-x≥2$\sqrt{{3}^{x}•{3}^{-x}}$=2(x∈R)
D.y=sinx+$\frac{1}{sinx}$≥2$\sqrt{sinx•\frac{1}{sinx}}$=2(0<x<$\frac{π}{2}$)

查看答案和解析>>

同步练习册答案