精英家教网 > 高中数学 > 题目详情
1.数列{an}通项公式为an=n+2n,求数列{an}的前n项和.

分析 运用数列的求和方法:分组求和,结合等差数列和等比数列的求和公式,即可得到.

解答 解:由an=n+2n,可得
{an}的前n项和为(1+2+…+n)+(2+4+…+2n
=$\frac{1}{2}$n(1+n)+$\frac{2(1-{2}^{n})}{1-2}$
=$\frac{1}{2}$n(1+n)+2n+1-2.

点评 本题考查数列的求和方法:分组求和,考查等差数列和等比数列的求和公式的运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.若直线m、n的方向向量分别为$\overrightarrow{a}$,$\overrightarrow{b}$,则“m∥n“是“$\overrightarrow{a}$∥$\overrightarrow{b}$“的(  )
A.充分非必要条件B.必要非充分条件
C.充分必要条件D.既非充分又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知圆C1:(x-2)2+(y-3)2=1和直线l:y=kx+1.
(1)若k=-1,求圆C1关于直线l对称的圆C2的方程;
(2)若O为坐标原点,直线l交圆C1于不同的两点M,N,且$\overrightarrow{OM}$•$\overrightarrow{ON}$>12,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知斜率为k的直线l经过点A(0,2),圆C:(x-2)2+(y-3)2=1,直线1与圆C相交于M.N两点.
(1)证明:$\overrightarrow{AM}$•$\overrightarrow{AN}$为定值;
(2)若$\overrightarrow{AM}$=λ$\overrightarrow{AN}$,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知集合M满足{a,b}⊆M?{a,b,c,d,e},则满足条件的集合M有7个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的部分图象如图所示,如果x1,x2∈(-$\frac{π}{3}$,$\frac{π}{6}$),且f(x1)=f(x2),则f(x1+x2)等于(  )
A.-1B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.解下列关于x的不等式:
(1)ax2+(a-1)x-1>0;
(2)$\frac{{x}^{2}-x-6}{{x}^{2}-x-12}$>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC在,角A,B,C的对边分别为a,b,c,已知cosC=$\frac{1}{3}$,sinA=$\sqrt{2}$cosB.
(1)求tanB的值;
(2)若△ABC的面积S为$\frac{5\sqrt{2}}{4}$,求c.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.方程sinx-$\sqrt{3}$cosx=1-2a有解,则实数a的取值范围为[-$\frac{1}{2}$,$\frac{3}{2}$].

查看答案和解析>>

同步练习册答案