精英家教网 > 高中数学 > 题目详情
8.函数f(x)=sin(2x+$\frac{π}{3}$)的单调递增区间为[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],k∈Z,函数f(x)=sin(-2x+$\frac{π}{3}$)的单调增区间为[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],k∈Z,函数f(x)=cos(-2x+$\frac{π}{3}$)的单调增区间[kπ-$\frac{2π}{3}$,kπ-$\frac{π}{6}$],k∈Z.

分析 由条件利用诱导公式化简函数的解析式,再利用正弦函数、余弦函数的单调性,求得它们的增区间.

解答 解:对于函数f(x)=sin(2x+$\frac{π}{3}$),令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,
求得kπ-$\frac{5π}{12}$≤x≤kπ+$\frac{π}{12}$,可得函数的增区间为[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],k∈Z.
对于函数f(x)=sin(-2x+$\frac{π}{3}$)=-sin(2x-$\frac{π}{3}$),令2kπ+$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,
求得kπ+$\frac{π}{12}$≤x≤kπ+$\frac{7π}{12}$,可得函数的增区间[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],k∈Z.
对于函数f(x)=cos(-2x+$\frac{π}{3}$)=cos(2x-$\frac{π}{3}$),令2kπ-π≤2x+$\frac{π}{3}$≤2kπ,
求得kπ-$\frac{2π}{3}$≤x≤kπ-$\frac{π}{6}$,可得函数的增区间[kπ-$\frac{2π}{3}$,kπ-$\frac{π}{6}$],k∈Z
故答案为:[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],k∈Z;[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$],k∈Z;[kπ-$\frac{2π}{3}$,kπ-$\frac{π}{6}$],k∈Z.

点评 本题主要考查诱导公式,正弦函数、余弦函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.若不等式ln$\frac{1+{2}^{x}+(1-2a){4}^{x}}{4}$≥xln4对任意x∈(-∞,2]恒成立,则实数a的取值范围是(  )
A.[1,+∞)B.(-∞,2]C.(-∞,-$\frac{43}{32}$]D.[-$\frac{43}{32}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,内角A、B、C的对边分别为a,b,c,b2+c2+bc-a2=0,则$\frac{asinBsin(B+C)}{bsinA}$的值为(  )
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知集合M满足{a,b}⊆M?{a,b,c,d,e},则满足条件的集合M有7个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设f(x)是定义在R上的偶函数,且f(2-x)=f(2+x),当x∈[-2,0]时,f(x)=($\frac{\sqrt{2}}{2}$)x-1,记g(x)=f(x)-loga(x+2)(其中a>0,a≠1),试讨论函数g(x)在区间(-2,6]上零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.解下列关于x的不等式:
(1)ax2+(a-1)x-1>0;
(2)$\frac{{x}^{2}-x-6}{{x}^{2}-x-12}$>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知二次函数y=f(x),当x=2时有最大值16,它与x轴相交所得的线段长为8,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A、B、C对应的边分别为a、b、c,且A+B=$\frac{π}{3}$.
(1)求sinAcosB+cosAsinB的值;
(2)若a=1,b=2,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列说法正确的个数是(  )
①∅=0;②∅={0};③∅={∅};④0∈∅;⑤0∈{0};⑥∅∈{∅};⑦∅?{∅}.
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案