精英家教网 > 高中数学 > 题目详情
14.设直线ax-y+3=0与圆(x-1)2+(y-2)2=4有两个不同的交点A,B,且弦AB的长为2$\sqrt{3}$,则a等于0.

分析 先确定圆心和半径,然后利用圆中的垂径定理求得圆心到直线的距离,从而建立关于a的方程,即可求得a的值.

解答 解:圆(x-1)2+(y-2)2=4的圆心C(1,2),半径r=2
弦AB的中点为D,则|AD|=$\sqrt{3}$,由圆的性质得圆心到直线的距离d=1,
∴C到直线的距离为$\frac{|a-2+3|}{\sqrt{{a}^{2}+1}}$=1
即|a+1|=$\sqrt{{a}^{2}+1}$,
平方得a2+2a+1=a2+1,
即2a=0,
解得:a=0,
故答案为:0.

点评 本题考查了直线与圆相交的性质,注意圆中的直角三角形的应用,避免联立直线与圆的方程,利用半径,半弦,圆心距之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.化简下列各式(写出化简过程)
(1)${(ln5)^0}+{(\frac{9}{4})^{0.5}}+\sqrt{{{(1-\sqrt{2})}^2}}-{2^{{{log}_4}2}}$;
(2)lg5•lg20+lg22.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求函数的定义域:
(1)$y=\sqrt{{{log}_{\frac{1}{3}}}({3x-2})}$;
(2)f(x)=$\sqrt{\frac{{log}_{\frac{1}{2}}x-1}{4x-1}}$;
(3)f(x)=${log}_{(x+1)}(16{-4}^{x})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.过原点且倾斜角为30°的直线被圆x2+y2-6$\sqrt{3}$y=0所截得的弦长为3$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.函数y=Asin(ωx+φ)+k在一个周期内的图象如图所示,且ω>0,求其解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,点A,B,C的坐标分别为(cosα,sinα),(cos∠ABC,sin∠ABC),(cos∠BCA,-sin∠BCA).已知向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$满足$\overrightarrow{OA}$+$\sqrt{t}$$\overrightarrow{OB}$+$\frac{1}{\sqrt{t}}$$\overrightarrow{OC}$=$\overrightarrow{0}$,其中O为坐标原点,t为大于零的实数.S△OAB,S△OBC,S△OCA分别表示△OAB,△OBC,△OCA的面积.
(1)若cos∠CAB=f(t),求f(t)的解析式;
(2)当f(t)取得最小值时,求S△OBC:S△OCA:S△OAB
(3)若O在△ABC的内部(不含边界),由(2)的结果猜想:S△OBC:S△OCA:S△OAB是多少?(直接写出结果,不需给出演步骤)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别F1(-c,0),F2(c,0),若双曲线上存在点P满足$\frac{a}{sin∠PF{{\;}_{1}F}_{2}}$=$\frac{c}{sin∠P{F}_{2}{F}_{1}}$1,则该曲线的离心率的取值范围为(  )
A.(1,$\sqrt{2}$+1)B.(1,$\sqrt{3}$)C.($\sqrt{3}$,+∞)D.($\sqrt{2}$+1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列函数既是奇函数,又在区间[-1,1]上单调递增的是(  )
A.y=sin2xB.y=-|x+1|C.y=ln$\frac{2+x}{2-x}$D.y=$\frac{{a}^{x}+{a}^{-x}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.化简:$\frac{cos180°sin(180°+α)+sin(-α)-tan(180°+α)}{tan(180°+α)+cos(-α)+cos(180°-α)}$=-1.

查看答案和解析>>

同步练习册答案