精英家教网 > 高中数学 > 题目详情
18.已知sinα-cosα=$\frac{1}{5}$(0<α<$\frac{π}{2}$),则sin2α=$\frac{24}{25}$,sin(2α-$\frac{π}{4}$)=$\frac{31\sqrt{2}}{50}$.

分析 把所给的等式平方求得sin2α 的值,再利用同角三角函数的基本关系求得sinα 和cosα的值,可得cos2α 的值,从而利用两角差的正弦公式求得sin(2α-$\frac{π}{4}$)的值.

解答 解:∵sinα-cosα=$\frac{1}{5}$(0<α<$\frac{π}{2}$),平方可得,1-2sinαcosα=$\frac{1}{25}$,
∴sin2α=2sinαcosα=$\frac{24}{25}$.
由以上可得sinα=$\frac{4}{5}$,cosα=$\frac{3}{5}$,∴cos2α=2cos2α-1=-$\frac{7}{25}$,
∴sin(2α-$\frac{π}{4}$)=sin2αcos$\frac{π}{4}$-cos2αsin$\frac{π}{4}$=$\frac{24}{25}$×$\frac{\sqrt{2}}{2}$+$\frac{7}{25}×\frac{\sqrt{2}}{2}$=$\frac{31\sqrt{2}}{50}$,
故答案为:$\frac{24}{25}$;$\frac{31\sqrt{2}}{50}$.

点评 本题主要考查二倍角公式、同角三角函数的基本关系、两角和差的正弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.定义域是R的函数,其图象是连续不断的,若存在常数λ(λ∈R)使得f(x+λ)+λf(x)=0对任意实数都成立,则称f(x)是R上的一个“λ的相关函数”.有下列关于“λ的相关函数”的结论:
①f(x)=0是常数函数中唯一一个“λ的相关函数”;
②f(x)=x2是一个“λ的相关函数”;
③“$\frac{1}{2}$的相关函数”至少有一个零点;
④若y=ex是“λ的相关函数”,则-1<λ<0.
其中正确结论的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员36人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,42,则这四个社区驾驶员的总人数N为300.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.不等式|3x-1|>x的解集是(-∞,$\frac{1}{4}$)∪($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设抛物线C1:y2=4x的焦点为F,动点D到点F的距离与到直线x=4的距离之比为$\frac{1}{2}$.
(1)求动点D的轨迹C2的方程;
(2)过点F作直线l与曲线C2交于P、Q两点,A1,A2为C2与x轴的交点,直线PA1,QA2相交于点M,直线PA2,QA1相交于点N,求证:MF⊥NF.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知实数ai,bi(i=1,2,3)满足a1<a2<a3,b1<b2<b3,且(ai-b1)(ai-b2)(ai-b3)=-1(i=1,2,3),则下列结论正确的是(  )
A.b1<a1<a2<b2<b3<a3B.a1<b1<b2<a2<a3<b3
C.a1<a2<b1<b2<a3<b3D.b1<b2<a1<a2<b3<a3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知点$A(1{,_{\;}}\sqrt{2})$是离心率为$\frac{{\sqrt{2}}}{2}$的椭圆$\frac{x^2}{b^2}+\frac{y^2}{a^2}$=1(a>b>0)上的一点,斜率为$\sqrt{2}$的直线BC交椭圆于B、C两点,且B、C与A点均不重合.
(Ⅰ)求椭圆的方程;
(Ⅱ)△ABC的面积是否存在着最大值?若存在,求出这个最大值;若不存在,请说明理由?
(Ⅲ)求直线AB与直线AC斜率的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.一个几何体的三视图及尺寸如图所示,其中正视图是直角三角形,侧视图是半圆,俯视图是等腰三角形,该几何体的表面积是(  )
A.16$\sqrt{2}$+16πB.16$\sqrt{2}$+8πC.8$\sqrt{2}$+8πD.8$\sqrt{2}$+16π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知实数x,y满足条件$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x+y≤1}\end{array}\right.$,则z=x-2y的最大值与最小值之差为3.

查看答案和解析>>

同步练习册答案