分析 利用复数的运算性质、模的计算公式、和差化积、三角函数求值即可得出.
解答 解:|1-i+z|=|cos θ+isin θ+1-i|
=$\sqrt{(cosθ+1)^{2}+(sinθ-1)^{2}}$
=$\sqrt{2(cosθ-sinθ)+3}$
=$\sqrt{2\sqrt{2}cos(θ+\frac{π}{4})+3}$,
当θ=$\frac{7π}{4}$时,|1-i+z|max=$\sqrt{2}$+1;
当θ=$\frac{3π}{4}$时,|1-i+z|min=$\sqrt{2}$-1.
点评 本题考查了复数的运算性质、模的计算公式、和差化积、三角函数求值,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com