精英家教网 > 高中数学 > 题目详情
已知函数f(x)是定义在(-1,1)上的奇函数,则f(0)=
 
考点:函数奇偶性的性质
专题:计算题,函数的性质及应用
分析:由奇函数的定义,代入0化简即可求值.
解答: 解:∵函数f(x)是定义在(-1,1)上的奇函数,
∴f(-0)=-f(0),
∴f(0)=0;
故答案为:0.
点评:本题考查了函数的奇偶性的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1的一条渐近线方程为y=
2
x,则双曲线的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,x2+1<2x;命题q:若mx2-mx-1<0恒成立,则-4<m≤0,那么(  )
A、“¬p”是假命题
B、“q”是假命题
C、“p∧q”为真命题
D、“p∨q”为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2,0<x≤2
5,x=0
-x2,-2≤x<0

(1)求函数f(x)的最值;
(2)写出函数f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

设m,n,p∈R,且m+n=2-p,m2+n2=12-p2,则p的最大值和最小值的差为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩阵A=
21
01
,向量
b
=
10
2
.求向量
a
,使得A2a=b.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列定义:
①对于函数f(x),若存在x0∈R使f(x0)=x0成立,则称x0为函数f(x)的不动点;
②若函数的定义域区间与值域区间完全相同,则称该区间为函数的保值区间.
设函数f(x)=x2-2ax+a2+a(x∈R),则该函数有(  )
A、一个不动点和一个保值区间
B、两个不动点和一个保值区间
C、两个不动点和两个保值区间
D、两个不动点和三个保值区间

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+a
x
,且f(1)=2
(1)判断并证明函数f(x)在其定义域上的奇偶性;
(2)证明函数f(x)在(1,+∞)上是增函数;
(3)求函数f(x)在区间[2,5]上的最大值与最小值.

查看答案和解析>>

同步练习册答案