精英家教网 > 高中数学 > 题目详情
给出下列定义:
①对于函数f(x),若存在x0∈R使f(x0)=x0成立,则称x0为函数f(x)的不动点;
②若函数的定义域区间与值域区间完全相同,则称该区间为函数的保值区间.
设函数f(x)=x2-2ax+a2+a(x∈R),则该函数有(  )
A、一个不动点和一个保值区间
B、两个不动点和一个保值区间
C、两个不动点和两个保值区间
D、两个不动点和三个保值区间
考点:根的存在性及根的个数判断
专题:计算题,函数的性质及应用
分析:由题意解方程x2-2ax+a2+a=x可得不动点,由不动点可求函数的保值区间.
解答: 解:由题意,f(x)=x2-2ax+a2+a,假设存在x0,f(x0)=x0成立,
即判断方程x2-2ax+a2+a=x的根的个数,
因为△=(2a+1)2-4(a2+a)=1>0,
故有两个不动点a,a+1;
函数f(x)=x2-2ax+a2+a有三个保值区间:
[a,a+1],[a,+∞),[a+1,+∞);
故选D.
点评:本题考查了学生对于新知识的接受能力与应用能力,同时考查了转化能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,平行四边形ABCD中,AB=2,AD=2
2
,且∠BAD=45°,以BD为折线,把△ABD折起,使平面ABD⊥平面CBD,连接AC.

(1)求异面直线AD与BC所成角大小;
(2)求二面角B-AC-D平面角的大小; 
(3)求四面体ABCD外接球的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在(-1,1)上的奇函数,则f(0)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若双曲线
x2
4
-
y2
m
=1的离心率为
7
2
,则m的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x-2|,g(x)=-|x-3|+m.
(Ⅰ)解不等式f(x)>x+1;
(Ⅱ)若y=f(x)与y=g(x)图象上有公共点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax-a-x(a>0且a≠1).
(Ⅰ)若f(1)>0,试求不等式f(x2+2x)+f(x-4)>0的解集;
(Ⅱ)若f(1)=
3
2
,且g(x)=a2x+a-2x-2mf(x),且g(x)在[1,+∞)上的最小值为-2,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线a,b分别是长方体相邻两个面上的对角线所在直线,则a,b位置关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

利用单调性的定义证明函数f(x)=
x+2
x+1
在(-1,+∞)上是减函数,并求函数f(x)在[0,1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}的通项公式是an=(-1)n(3n-2),则a1+a2+…+a100=(  )
A、150B、120
C、-120D、-150

查看答案和解析>>

同步练习册答案