精英家教网 > 高中数学 > 题目详情
若数列{an}的通项公式是an=(-1)n(3n-2),则a1+a2+…+a100=(  )
A、150B、120
C、-120D、-150
考点:数列的求和
专题:
分析:依题意,可知a1+a2+…+a100=(a1+a2)+(a3+a4)+…+(a99+a100)=(-1+4)+(-7+10)+(-13+16)+…+(-295+298),利用等差数列的性质可得答案.
解答: 解:原式=-1+4-7+10-…-295+298
=(-1+4)+(-7+10)+(-13+16)+…+(-295+298)
=3×50=150.
故选:A.
点评:本题考查数列的求和,分组求和是关键,考查等价转化思想与运算求解能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列定义:
①对于函数f(x),若存在x0∈R使f(x0)=x0成立,则称x0为函数f(x)的不动点;
②若函数的定义域区间与值域区间完全相同,则称该区间为函数的保值区间.
设函数f(x)=x2-2ax+a2+a(x∈R),则该函数有(  )
A、一个不动点和一个保值区间
B、两个不动点和一个保值区间
C、两个不动点和两个保值区间
D、两个不动点和三个保值区间

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x2+a
x
,且f(1)=2
(1)判断并证明函数f(x)在其定义域上的奇偶性;
(2)证明函数f(x)在(1,+∞)上是增函数;
(3)求函数f(x)在区间[2,5]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知0<x<0.5,则x取何值时,x(1-2x)的值最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

己知函数f(x)=
10x-99
x-10
,{an}为a1=1,d=2的等差数列,则f(a1)+f(a2)+f(a3)+…+f(a10)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-ax,g(x)=lnx
(1)若f(x)≥g(x)对于定义域内的任意x恒成立,求实数a的取值范围;
(2)设h(x)=f(x)+g(x)有两个极值点x1,x2,且x1∈(0,
1
2
),证明:h(x1)-h(x2)>
3
4
-ln2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在长方体ABCD-A1B1C1D1中,AB=
2
,AD=AA1=1,M是A1C1的中点.
(1)求证:CM∥平面A1BD,
(2)求二面角A1-BD-C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某客运公司确定客票价格的方法是:如果行程不超过100km,票价是0.5元/km,超过100km部分按0.4元/km定价(不满1km的部分按1km计算),则客运票价y(元)与行程x(km)(x∈Z)之间的函数关系式是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是一个边长为1的正方形及其内切圆,现随机地向该正方形内投一粒黄豆(视为一点),则黄豆落入圆内的概率为
 

查看答案和解析>>

同步练习册答案