分析 设出直线的方程,与抛物线的方程联立消去y,进而根据韦达定理表示出x1+x2和x1x2,进而利用利用弦长公式表示出AB的长,即可求得p.
解答 解:由题意可知过焦点的直线方程为y=x-$\frac{p}{4}$,代入抛物线y2=px,
消去y可得x2-$\frac{3}{2}$px+$\frac{{p}^{2}}{16}$=0,
设A(x1,y1),B(x2,y2),则
∴x1+x2=$\frac{3}{2}$p,x1x2=$\frac{{p}^{2}}{16}$
∴|AB|=x1+x2+$\frac{p}{2}$=2p=8
解得p=4,
故答案为:4.
点评 本题主要考查了抛物线的简单性质.涉及直线与抛物线的关系时,往往是利用韦达定理设而不求.
科目:高中数学 来源: 题型:解答题
| 随机数组的特征 | 3个数字均相同 | 恰有2个数字相同 | 其余情况 |
| 奖金(单位:元) | 500 | 200 | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(-1)<f(3) | B. | f (0)>f(3) | C. | f (-1)=f (-3) | D. | f(2)<f(3) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,2) | B. | (-∞,2) | C. | (-∞,-2)∪(2,+∞) | D. | (2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\overrightarrow{a}$•$\overrightarrow{b}$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow{b}$•$\overrightarrow{c}$) | B. | |$\overrightarrow{a}$-$\overrightarrow{b}$|2=|$\overrightarrow{a}$|2-2|$\overrightarrow{a}$||$\overrightarrow{b}$|+|$\overrightarrow{b}$|2 | ||
| C. | 若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{a}$+$\overrightarrow{b}$|,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60° | D. | 若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60° |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com