精英家教网 > 高中数学 > 题目详情
12.设集合A={(x,y)|2x+y=1,x∈R,y∈R},B={(x,y)|a2x+2y=a,x,y∈R}
(1)若A∩B={(2,-3)},求实数a的值.
(2)是否存在实数a,使得A∩B=∅?若存在,求出a的值,若不存在,说明理由.

分析 (1)将(2,-3)代入a2x+2y=a,得:2a2-a-6=0,解出检验即可;
(2)将y=1-2x代入a2x+2y=a,得:(a2-4)x+2-a=0,方程无解即可.

解答 解:(1)若A∩B={(2,-3)},
将(2,-3)代入a2x+2y=a,
得:2a2-a-6=0,解得:a=2或a=-$\frac{3}{2}$,
a=2时,B={(x,y)|2x+y=1}=A,舍去,
故a=-$\frac{3}{2}$;
(2)将y=1-2x代入a2x+2y=a,
得:(a2-4)x+2-a=0,
由$\left\{\begin{array}{l}{{a}^{2}-4=0}\\{2-a≠0}\end{array}\right.$,解得:a=-2,
故存在实数a=-2,使得A∩B=∅.

点评 本题考查了集合的运算,考查交集的定义,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=lg(-x2+ax-a-1).
(1)函数在区间(2,3)上有意义,求实数a的取值范围;
(2)函数的定义域是区间(2,3),求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知△ABC是等边三角形,|AB|=2,D为BC的中点,求$\overrightarrow{AB}$•$\overrightarrow{BC}$和($\overrightarrow{AB}$+$\overrightarrow{AC}$)•$\overrightarrow{BD}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知集合M,N,I的关系如图,则N∩(∁1M)=∅.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若x,y为非零实数,a=$\frac{x}{|x|}$+$\frac{y}{|y|}$,则所有不同a组成的集合为(  )
A.{-2,2}B.{0,2}C.{-2,0}D.{-2,0,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,且过点($\sqrt{2}$,1).
(1)求椭圆C的方程;
(2)设P是椭圆C长轴上的一个动点,过P作斜率为$\frac{\sqrt{2}}{2}$的直线l交椭圆C于A,B两点,求证:|PA|2+|PB|2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数y=f(2x-3)的定义域是[-2,3],求函数y=f(x+2)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.判断下列函数是否是周期函数,若是则求其周期.
(1)f(x)=cos2x;(2)f(x)=tan(x+$\frac{π}{4}$);
(3)f(x)=|sin$\frac{x}{2}$|;(4)f(x)=sinx+$\frac{1}{2}$sin2x;
(5)f(x)=2sin($\frac{3}{4}$x+1);(6)f(x)=xsinx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知全集S={a,b,c,d,e},A,B⊆S,A∩B={b},B∩(∁SA)={a,d},那么集合∁SB={c,e}.

查看答案和解析>>

同步练习册答案