分析 由条件利用正弦函数的定义域和值域求得f(x)在区间[-$\frac{π}{6}$,$\frac{π}{4}$]上的最大值与最小值.
解答 解:由x∈[-$\frac{π}{6}$,$\frac{π}{4}$],可得2x+$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{2π}{3}$],
故当2x+$\frac{π}{6}$=-$\frac{π}{6}$时,f(x)=2sin(2x+$\frac{π}{6}$)取得最小值为-1,
当2x+$\frac{π}{6}$=$\frac{π}{2}$时,f(x)=2sin(2x+$\frac{π}{6}$)取得最小值为2.
点评 本题主要考查正弦函数的定义域和值域,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 3 | C. | 6 | D. | 10 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com