4£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{m+8}$+$\frac{{y}^{2}}{m}$=1£¨m£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{6}}{3}$£®
£¨1£©ÇómµÄÖµ£»
£¨2£©ÉèµãAΪÍÖÔ²CµÄÉ϶¥µã£¬ÎÊÊÇ·ñ´æÔÚÍÖÔ²CµÄÒ»ÌõÏÒAB£¬Ê¹Ö±ÏßABÓëÔ²£¨x-1£©2+y2=r2£¨r£¾0£©ÏàÇУ¬ÇÒÇеãPÇ¡ºÃΪÏß¶ÎABµÄÖе㣿Èô´æÔÚ£¬ÆäÂú×ãÌõ¼þµÄËùÓÐÖ±ÏßABµÄ·½³ÌºÍ¶ÔÓ¦µÄrµÄÖµ£¿Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÒÑÖªµÃa2=m+8£¬b2=m£¬c2=a2-b2=8£¬$\frac{8}{m+8}$=$\frac{2}{3}$£¬ÓÉ´ËÄÜÇó³ömµÄÖµ£®
£¨2£©ÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{4}$=1£¬A£¨0£¬2£©£¬ÏßABµÄбÂʲ»´æÔÚʱ£¬Ö±ÏßABµÄÖ±ÏßΪx=0£¬·ûºÏÌâÒ⣮µ±Ö±ÏßABбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßABµÄ·½³ÌΪy=kx+2£¬P£¨x0£¬y0£©£¬´úÈëÍÖÔ²·½³Ì£®µÃÕûÀí£¬µÃ£º£¨1+3k2£©x2+12kx=0£¬ÓÉ´ËÀûÓÃÖ±Ïß·½³Ì¡¢µãµ½Ö±ÏߵľàÀ빫ʽ£¬ÄÜÇó³ö½á¹û£®

½â´ð ½â£º£¨1£©¡ßÍÖÔ²C£º$\frac{{x}^{2}}{m+8}$+$\frac{{y}^{2}}{m}$=1£¨m£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{6}}{3}$£¬
¡àa2=m+8£¬b2=m£¬c2=a2-b2=8£¬
¡ßÀëÐÄÂÊΪ$\frac{\sqrt{6}}{3}$£¬¡à$\frac{8}{m+8}$=$\frac{2}{3}$£¬
½âµÃm=4£®
£¨2£©ÓÉ£¨1£©ÖªÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{4}$=1£¬¡àA£¨0£¬2£©£¬
¼ÙÉè´æÔÚÍÖÔ²CµÄÒ»ÌõÏÒABÂú×ãÌõ¼þ£¬
µ±Ö±ÏßABµÄбÂʲ»´æÔÚʱ£¬Ö±ÏßABµÄÖ±ÏßΪx=0£¬·ûºÏÌâÒ⣬
´Ëʱ£¬P£¨0£¬0£©£¬r=1£®
µ±Ö±ÏßABбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßABµÄ·½³ÌΪy=kx+2£¬P£¨x0£¬y0£©£¬
ÓÉ$\left\{\begin{array}{l}{{x}^{2}+3{y}^{2}=12}\\{y=kx+2}\end{array}\right.$£¬ÏûÈ¥y£¬ÕûÀí£¬µÃ£º£¨1+3k2£©x2+12kx=0£¬
½âµÃx=0£¬»òx=-$\frac{12k}{1+3{k}^{2}}$£¬¡à${x}_{0}=-\frac{6k}{1+3{k}^{2}}$£¬${y}_{0}=\frac{2}{1+3{k}^{2}}$£¬
ÓÉ$\frac{\frac{2}{1+3{k}^{2}}-0}{-\frac{6k}{1+3{k}^{2}}-1}$¡Ák=-1£¬µÃ3k2+4k+1=0£¬
½âµÃk=-1»òk=-$\frac{1}{3}$£®
¡àÖ±ÏßAB£ºy=-x+2£¬r=$\frac{\sqrt{2}}{2}$£¬»òÖ±ÏßAB£ºy=-$\frac{1}{3}x+2$£¬r=$\frac{\sqrt{10}}{2}$£®
×ÛÉÏ£¬´æÔÚÕâÑùµÄÏÒAB£¬Ö±ÏßAB£ºx=0£¬r=1£¬
»òÖ±ÏßAB£ºy=-x+2£¬r=$\frac{\sqrt{2}}{2}$£¬»òÖ±ÏßAB£ºy=-$\frac{1}{3}x+2$£¬r=$\frac{\sqrt{10}}{2}$£®

µãÆÀ ±¾Ì⿼²éʵÊýÖµµÄÇ󷨣¬¿¼²éÖ±Ïß·½³ÌµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÖ±Ïß·½³ÌµÄÐÔÖʵĺÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Èç¹û¹ØÓÚxµÄ²»µÈʽ|x+4|+|x+8|¡ÝmÔÚx¡ÊRÉϺã³ÉÁ¢£¬Ôò²ÎÊýmµÄȡֵ·¶Î§Îªm¡Ü4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÇóÏÂÁк¯ÊýµÄ¶¨ÒåÓò£º
£¨1£©f£¨x£©=$\frac{\sqrt{5-x}}{|x|-3}$£»
£¨2£©y=$\frac{\sqrt{{x}^{2}-1}+\sqrt{1-{x}^{2}}}{x-1}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖªa=31.2£¬b=2log30.3£¬c=0.82.3£¬Ôòa£¬b£¬cµÄ´óС¹ØÏµÎª£¨¡¡¡¡£©
A£®c£¼b£¼aB£®c£¼a£¼bC£®b£¼a£¼cD£®b£¼c£¼a

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÔÚ¼«×ø±êϵÖУ¬Ô²CµÄ·½³ÌΪ¦Ñ=2asin¦È£¨a¡Ù0£©£¬ÒÔ¼«µãÎª×ø±êÔ­µã£¬¼«ÖáΪxÖáµÄÕý°ëÖὨÁ¢Æ½ÃæÖ±½Ç×ø±êϵ£¬ÉèÖ±ÏߵIJÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=t+2\\ y=2t+3\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£®
£¨1£©ÇóÔ²CµÄÖ±½Ç×ø±ê·½³ÌºÍÖ±ÏߵįÕͨ·½³Ì£»
£¨2£©ÈôÖ±ÏßlÓëÔ²CºãÓй«¹²µã£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÅ×ÎïÏßx2=4y£¬Ð±ÂÊΪkµÄÖ±Ïßl¹ýÆä½¹µãFÇÒÓëÅ×ÎïÏßÏཻÓÚµãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©
£¨1£©ÇóÖ±ÏßLµÄÒ»°ãʽ·½³Ì£»
£¨2£©Çó¡÷AOBµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªÍÖÔ²C1£º$\frac{x^2}{4}+\frac{y^2}{3}=1$£¬Å×ÎïÏßC2£º£¨y-m£©2=2px£¨p£¾0£©£¬ÇÒC1¡¢C2µÄ¹«¹²ÏÒAB¹ýÍÖÔ²C1µÄÓÒ½¹µã£®
£¨1£©µ±AB¡ÍxÖáʱ£¬Çóp£¬mµÄÖµ£¬²¢ÅжÏÅ×ÎïÏßC2µÄ½¹µãÊÇ·ñÔÚÖ±ÏßABÉÏ£»
£¨2£©ÈôÅ×ÎïÏßC2µÄ½¹µãÔÚÖ±ÏßABÉÏ£¬ÇóÖ±ÏßABµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®²àÀⳤºÍµ×Ãæ±ß³¤¾ùΪ1µÄÕýËÄÀâ×¶µÄ²àÃæ»ýΪ£¨¡¡¡¡£©
A£®$\sqrt{3}$B£®2C£®3D£®$\frac{3\sqrt{3}}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®rn£¬nÊDz»Í¬µÄÖ±Ïߣ¬¦Á£¬¦ÂÊDz»ÖØºÏµÄÆ½Ã棬ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Èô¦Á¡Î¦Â£¬m?¦Á£¬n?¦Â£¬Ôòm¡În
B£®Èôm£¬n?¦Á£¬m¡Î¦Â£¬n¡Î¦Â£¬Ôò¦Á¡Î¦Â
C£®m£¬nÊÇÒìÃæÖ±Ïߣ¬Èôm¡Î¦Á£¬m¡Î¦Â£¬n¡Î¦Â£¬Ôò¦Á¡Î¦Â
D£®Èô¦Á¡Î¦Â£¬m¡Î¦Á£¬Ôòm¡Î¦Â

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸