·ÖÎö £¨1£©ÓÉÒÑÖªµÃa2=m+8£¬b2=m£¬c2=a2-b2=8£¬$\frac{8}{m+8}$=$\frac{2}{3}$£¬ÓÉ´ËÄÜÇó³ömµÄÖµ£®
£¨2£©ÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{4}$=1£¬A£¨0£¬2£©£¬ÏßABµÄбÂʲ»´æÔÚʱ£¬Ö±ÏßABµÄÖ±ÏßΪx=0£¬·ûºÏÌâÒ⣮µ±Ö±ÏßABбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßABµÄ·½³ÌΪy=kx+2£¬P£¨x0£¬y0£©£¬´úÈëÍÖÔ²·½³Ì£®µÃÕûÀí£¬µÃ£º£¨1+3k2£©x2+12kx=0£¬ÓÉ´ËÀûÓÃÖ±Ïß·½³Ì¡¢µãµ½Ö±ÏߵľàÀ빫ʽ£¬ÄÜÇó³ö½á¹û£®
½â´ð ½â£º£¨1£©¡ßÍÖÔ²C£º$\frac{{x}^{2}}{m+8}$+$\frac{{y}^{2}}{m}$=1£¨m£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{6}}{3}$£¬
¡àa2=m+8£¬b2=m£¬c2=a2-b2=8£¬
¡ßÀëÐÄÂÊΪ$\frac{\sqrt{6}}{3}$£¬¡à$\frac{8}{m+8}$=$\frac{2}{3}$£¬
½âµÃm=4£®
£¨2£©ÓÉ£¨1£©ÖªÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{4}$=1£¬¡àA£¨0£¬2£©£¬
¼ÙÉè´æÔÚÍÖÔ²CµÄÒ»ÌõÏÒABÂú×ãÌõ¼þ£¬
µ±Ö±ÏßABµÄбÂʲ»´æÔÚʱ£¬Ö±ÏßABµÄÖ±ÏßΪx=0£¬·ûºÏÌâÒ⣬
´Ëʱ£¬P£¨0£¬0£©£¬r=1£®
µ±Ö±ÏßABбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßABµÄ·½³ÌΪy=kx+2£¬P£¨x0£¬y0£©£¬
ÓÉ$\left\{\begin{array}{l}{{x}^{2}+3{y}^{2}=12}\\{y=kx+2}\end{array}\right.$£¬ÏûÈ¥y£¬ÕûÀí£¬µÃ£º£¨1+3k2£©x2+12kx=0£¬
½âµÃx=0£¬»òx=-$\frac{12k}{1+3{k}^{2}}$£¬¡à${x}_{0}=-\frac{6k}{1+3{k}^{2}}$£¬${y}_{0}=\frac{2}{1+3{k}^{2}}$£¬
ÓÉ$\frac{\frac{2}{1+3{k}^{2}}-0}{-\frac{6k}{1+3{k}^{2}}-1}$¡Ák=-1£¬µÃ3k2+4k+1=0£¬
½âµÃk=-1»òk=-$\frac{1}{3}$£®
¡àÖ±ÏßAB£ºy=-x+2£¬r=$\frac{\sqrt{2}}{2}$£¬»òÖ±ÏßAB£ºy=-$\frac{1}{3}x+2$£¬r=$\frac{\sqrt{10}}{2}$£®
×ÛÉÏ£¬´æÔÚÕâÑùµÄÏÒAB£¬Ö±ÏßAB£ºx=0£¬r=1£¬
»òÖ±ÏßAB£ºy=-x+2£¬r=$\frac{\sqrt{2}}{2}$£¬»òÖ±ÏßAB£ºy=-$\frac{1}{3}x+2$£¬r=$\frac{\sqrt{10}}{2}$£®
µãÆÀ ±¾Ì⿼²éʵÊýÖµµÄÇ󷨣¬¿¼²éÖ±Ïß·½³ÌµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÖ±Ïß·½³ÌµÄÐÔÖʵĺÏÀíÔËÓã®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | c£¼b£¼a | B£® | c£¼a£¼b | C£® | b£¼a£¼c | D£® | b£¼c£¼a |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\sqrt{3}$ | B£® | 2 | C£® | 3 | D£® | $\frac{3\sqrt{3}}{4}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | Èô¦Á¡Î¦Â£¬m?¦Á£¬n?¦Â£¬Ôòm¡În | |
| B£® | Èôm£¬n?¦Á£¬m¡Î¦Â£¬n¡Î¦Â£¬Ôò¦Á¡Î¦Â | |
| C£® | m£¬nÊÇÒìÃæÖ±Ïߣ¬Èôm¡Î¦Á£¬m¡Î¦Â£¬n¡Î¦Â£¬Ôò¦Á¡Î¦Â | |
| D£® | Èô¦Á¡Î¦Â£¬m¡Î¦Á£¬Ôòm¡Î¦Â |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com