精英家教网 > 高中数学 > 题目详情
11.如图是正四面体的平面展开图,G、H、M、N分别为DE、BE、EF、EC的中点,在这个正四面体中,
①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是②③④.

分析 正四面体的平面展开图复原为正四面体A(B、C)-DEF,
①,依题意,GH∥AD,而AD与EF异面,从而可判断GH与EF不平行;
②,假设BD与MN共面,可得A、D、E、F四点共面,导出矛盾,从而可否定假设,肯定BD与MN为异面直线;
③,依题意知,GH∥AD,MN∥AF,∠DAF=60°,于是可判断GH与MN成60°角;
④,连接GF,那么A点在平面DEF的射影肯定在GF上,通过线面垂直得到线线垂直.

解答 解:将正四面体的平面展开图复原为正四面体A(B、C)-DEF,如图:

对于①,G、H分别为DE、BE的中点,则GH∥AD,而AD与EF异面,故GH与EF不平行,故①错误;
对于②,BD与MN为异面直线,正确(假设BD与MN共面,则A、D、E、F四点共面,与ADEF为正四面体矛盾,故假设不成立,故BD与MN异面);
对于③,依题意,GH∥AD,MN∥AF,∠DAF=60°,故GH与MN成60°角,故③正确;
对于④,连接GF,A点在平面DEF的射影A1在GF上,∴DE⊥平面AGF,DE⊥AF,
而AF∥MN,∴DE与MN垂直,故④正确.
综上所述,正确命题的序号是②③④,
故答案为:②③④.

点评 本题考查命题的真假判断与应用,着重考查空间直线间的位置关系,突出考查异面直线的判定、两直线所成的角的概念及应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.“a>1且b>1”是“ab>1”成立的充分不必要条件.(填充分不必要,必要不充分,充要条件或既不充分也不必要.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.浑南“万达广场”五一期间举办“万达杯”游戏大赛.每5人组成一队,编号为1,2,3,4,5,在其中的投掷飞镖比赛中,要求随机抽取3名队员参加,每人投掷一次.假设飞镖每次都能投中靶面,且靶面上每点被投中的可能性相同.某人投中靶面内阴影区域记为“成功”(靶面为圆形,ABCD为正方形).每队至少有2人“成功”则可获得奖品(其中任何两位队员“成功”与否互不影响).
(Ⅰ)某队中有3男2女,求事件A:“参加投掷飞镖比赛的3人中有男有女”的概率;
(Ⅱ)求某队可获得奖品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设全集U=R,已知集合A={x||x-a|<4},B={x||x-2|>2},且A∪B=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.不等式cosx≥-$\frac{1}{2}$的解为[2kπ-$\frac{2π}{3}$,2kπ+$\frac{2π}{3}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知实数x、y满足条件$\left\{\begin{array}{l}{-1≤x≤1}\\{0≤y≤2}\end{array}\right.$,则函数z=3x-y的最大值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图所示是三棱锥D-ABC的三视图,若在三棱锥的直观图中,点O为线段BC的中点,则异面直线DO与AB所成角的余弦值等于$\frac{\sqrt{6}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.不等式x2-4|x|+3>0的解为(  )
A.x<1或x>3B.x<-3或x>-1
C.x<-3或-1<x<1或x>3D.0≤x<1或x>3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.要使式子$\sqrt{\frac{x-2}{x+2}}$有意义,则x的取值范围是(  )
A.x∈(-∞,-2)∪[2,+∞)B.x∈(-∞,-2]∪[2,+∞)C.x∈(-2,2)D.x∈[-2,2]

查看答案和解析>>

同步练习册答案