精英家教网 > 高中数学 > 题目详情
4.在△ABC中,如果(a+b+c)(b+c-a)=bc,则A=$\frac{2π}{3}$.

分析 首先对(a+b+c)(b+c-a)=bc化简整理得b2+c2-a2=-bc,代入余弦定理中即可求得cosA,进而求得答案.

解答 解:∵(a+b+c)•(b+c-a)=(b+c)2-a2=b2+c2+2bc-a2=bc,
∴b2+c2-a2=-bc,
∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{-bc}{2bc}$=-$\frac{1}{2}$,
∴由A∈(0,π),可得:A=$\frac{2π}{3}$.
故答案为:$\frac{2π}{3}$.

点评 本题主要考查了余弦定理的应用.解题的关键是求得b2+c2-a2与bc的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知实数x,y满足y=x2-2x+2,-1≤x≤1,则$\frac{y+3}{x+2}$的最小值是(  )
A.$\frac{4}{3}$B.$2\sqrt{13}-6$C.8D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.把函数$y=sin(4x+\frac{π}{6})$图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将图象向右平移$\frac{π}{3}$个单位,那么所得图象的一条对称轴方程为(  )
A.$x=-\frac{π}{2}$B.$x=-\frac{π}{4}$C.$x=\frac{π}{4}$D.$x=\frac{π}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知$sin(\frac{π}{3}-α)=\frac{1}{3}$,则$cos(α+\frac{π}{6})$=(  )
A.$-\frac{{2\sqrt{2}}}{3}$B.$\frac{{2\sqrt{2}}}{3}$C.$\frac{1}{3}$D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.从某企业生产的某种产品中抽取100件样本,测量这些样本的一项质量指标值,由测量结果得如下频数分布表:
质量指标
值分组
[75,85)[85,95)[95,105)[105,115)[115,125]
频数62638228
则样本的该项质量指标值落在[105,125]上的频率为0.3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.将三项式(x2+x+1)n展开,当n=0,1,2,3,…时,得到以下等式:

(x2+x+1)0=1
(x2+x+1)1=x2+x+1
(x2+x+1)2=x4+2x3+3x2+2x+1
(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1
观察多项式系数之间的关系,可以仿照杨辉三角构造如图所示的广义杨辉三角形,其构造方法为:第0行为1,以下各行每个数是它头上与左右两肩上3数(不足3数的,缺少的数计为0)之和,第k行共有2k+1个数.若在(1+ax)(x2+x+1)5的展开式中,x8项的系数为75,则实数a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.据统计2016年“十一”黄金周哈尔滨太阳岛每天的游客人数服从正态分布N(2000,1002),则在此期间的某一天,太阳岛的人数不超过2300的概率为(  )
附;若X~N(μ,σ2
$\begin{array}{l}P(μ-σ<x≤μ+σ)=0.6826\\ P(μ-2σ<x≤μ+2σ)=0.9544\\ P(μ-3σ<x≤μ+3σ)=0.9974\end{array}$.
A.0.4987B.0.8413C.0.9772D.0.9987

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知平面内一定点A(5,0)、一定直线x=5,一动点M到定点A的距离等干它到定直线距离.求点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设f-1(x)为f(x)=$\frac{π}{6}$sinx,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的反函数,则y=f(x)+f-1(x)的值域为$[-\frac{7π}{12},\frac{7π}{12}]$.

查看答案和解析>>

同步练习册答案