【题目】设命题p:若实数x满足x2﹣4ax+3a2≤0,其中a>0;命题q:实数x满足 ![]()
(1)若a=1且p∧q为真,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.
【答案】
(1)解:命题p:若实数x满足x2﹣4ax+3a2≤0,其中a>0,可得a<x<3a;命题q:实数x满足
,化为
,解得
,解得2≤x≤3.
若a=1,则p化为:1<x<3,∵p∧q为真,∴
,解得2≤x≤3.
∴实数x的取值范围为[2,3]
(2)解:¬p是¬q的充分不必要条件,
∴q是p的充分不必要条件,
∴
,解得1≤a≤2.
∴实数a的取值范围是[1,2]
【解析】分别化简命题p:a<x<3a;命题q:实数x满足
,解得2≤x≤3.(1)若a=1,则p化为:1<x<3,由p∧q为真,可得p与q都为真.(2)¬p是¬q的充分不必要条件,可得q是p的充分不必要条件,即可得出.
科目:高中数学 来源: 题型:
【题目】如图(1)五边形
中, ![]()
,将
沿
折到
的位置,得到四棱锥
,如图(2),点
为线段
的中点,且
平面
.
(1)求证:平面
平面
;
(2)若四棱柱
的体积为
,求四面体
的体积.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,左、右顶点分别为
为直径的圆O过椭圆E的上顶点D,直线DB与圆O相交得到的弦长为
.设点
,连接PA交椭圆于点C.
(I)求椭圆E的方程;
(II)若三角形ABC的面积不大于四边形OBPC的面积,求t的最小值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题:
①“等边三角形的三个内角均为60°”的逆命题;
②“若k>0,则方程x2+2x﹣k=0有实根”的逆否命题;
③“全等三角形的面积相等”的否命题;
④“若
=
,则
⊥
”的否命题,
其中真命题的个数是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥
中,
底面
,
,
,
,
分别是
,
的中点,
在
上,且
.
(1)求证:
平面
;
(2)在线段上
上是否存在点
,使二面角
的大小为
?若存在,求出
的长;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{an}是等差数列,满足a1=3,a4=12,数列{bn}满足b1=4,b4=20,且{bn﹣an}为等比数列.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{bn}的前n项和.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com