【题目】如图(1)五边形中,
,将沿折到的位置,得到四棱锥,如图(2),点为线段的中点,且平面.
(1)求证:平面平面;
(2)若四棱柱的体积为,求四面体的体积.
【答案】(1)详见解析;(2).
【解析】试题分析:
(1)要证两平面垂直,就要证线面垂直,首先利用已知条件与平面垂直,为此取的中点,可证得四边形为平行四边形,所以,从而平面,也即
.于是由即及为的中点,可得为等边三角形,
,由,得, ,可得平面平面平面.
(2)利用棱锥体积公式,三棱锥的底面的面积是四棱锥的底面面积的,高为其一半,由体积公式可得结论.
试题解析:
(1)证明:取的中点,连接,则,
又,所以,则四边形为平行四边形,所以,
又平面,
∴平面,
∴.
由即及为的中点,可得为等边三角形,
∴,
又,∴,∴,
∴平面平面,
∴平面平面.
(2)解:设四棱锥的高为,四边形的面积为,
则,
又,四面体底面上的高为.
∴,
所以四面体的体积为.
科目:高中数学 来源: 题型:
【题目】如图,四棱锥的底面是正方形,每条侧棱的长都是底面边长的倍,为侧棱上的点.
(1)求证:.
(2)若⊥平面,求二面角的大小.
(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(n)=1+ + +…+ .经计算得f(4)>2,f(8)> ,f(16)>3,f(32)> .
(1)由上面数据,试猜想出一个一般性结论;
(2)用数学归纳法证明你的猜想.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在三棱柱ABC﹣A1B1C1中,AA1⊥底面A1B1C1 , 底面为直角三角形,∠ACB=90°,AC=2,BC=1,CC1= ,P是BC1上一动点,则A1P+PC的最小值是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AD∥BC,BC=2AD,PB⊥AC,Q是线段PB的中点. (Ⅰ)求证:AB⊥平面PAC;
(Ⅱ)求证:AQ∥平面PCD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知圆C:x2+y2=4和直线l:x=4,M为l上一动点,A1 , A2为圆C与x轴的两个交点,直线MA1 , MA2与圆C的另一个交点分别为P、Q.
(1)若M点的坐标为(4,2),求直线PQ方程;
(2)求证直线PQ过定点,并求出此定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名
观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众收看该节目的场数与所对应的人数表:
场数 | 9 | 10 | 11 | 12 | 13 | 14 |
人数 | 10 | 18 | 22 | 25 | 20 | 5 |
将收看该节目场次不低于13场的观众称为“歌迷”,已知“歌迷”中有10名女性.
(Ⅰ)根据已知条件完成下面的2×2列联表,并据此资料我们能否有95%的把握认为“歌迷”与性别有关?
非歌迷 | 歌迷 | 合计 | |
男 | |||
女 | |||
合计 |
(Ⅱ)将收看该节目所有场次(14场)的观众称为“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌迷”中任意选取2人,求至少有1名女性观众的概率.
0.05 | 0.01 | |
3.841 | 6.635 |
参考公式与数据: ,其中
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题p:若实数x满足x2﹣4ax+3a2≤0,其中a>0;命题q:实数x满足
(1)若a=1且p∧q为真,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com