分析 (I)化简f(x),根据$f({\frac{θ}{2}+\frac{2π}{3}})=\frac{6}{5}$求出sinθ,代入二倍角公式;
(II)根据x的范围求出2x-$\frac{π}{3}$的范围,结合正弦函数的图象与性质得出.
解答 解:(Ⅰ)$f(x)=\vec a•\vec b=sin2x-\sqrt{3}cos2x=2sin(2x-\frac{π}{3})$,
∴f($\frac{θ}{2}+\frac{2π}{3}$)=2sin(θ+π)=-2sinθ=$\frac{6}{5}$,∴sinθ=-$\frac{3}{5}$.
∴cos2θ=1-2sin2θ=1-$\frac{18}{25}$=$\frac{7}{25}$.
(Ⅱ)由$x∈[0,\frac{π}{2}]$,则$2x-\frac{π}{3}∈[-\frac{π}{3},\frac{2π}{3}]$,
∴当2x-$\frac{π}{3}$=-$\frac{π}{3}$时,f(x)取得最小值-$\sqrt{3}$,当2x-$\frac{π}{3}$=$\frac{π}{2}$时,f(x)取得最大值2.
∴f(x)的值域为$[-\sqrt{3},2]$.
点评 本题考查了三角函数的恒等变换和求值,利用三角函数公式对f(x)化简是关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}{π^2}}}{4}-1$ | B. | $\frac{{3{π^2}}}{4}-1$ | C. | $\frac{{3{π^2}}}{2}-1$ | D. | $\frac{π^2}{2}-1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com