精英家教网 > 高中数学 > 题目详情
4.设数列{an}的前n项和为Sn,设an是Sn与2的等差中项,数列{bn}中,b1=1,点P(bn,bn+1)在直线y=x+2上.
(Ⅰ)求an,bn
(Ⅱ)若数列{bn}的前n项和为Bn,比较$\frac{1}{2{B}_{1}}$+$\frac{2}{3{B}_{2}}$+…+$\frac{n}{(n+1){B}_{n}}$与1的大小.

分析 (I)由于an是Sn与2的等差中项,可得2an=Sn+2,利用当n≥2时,an=Sn-Sn-1即可得出an与an-1的关系,再利用等比数列的通项公式即可得出.由于点P(bn,bn+1)在直线x-y+2=0上,可得bn-bn+1+2=0即:bn+1-bn=2,再利用等差数列的通项公式即可得出.
(II)利用等差数列的前n项和公式可得Bn,再利用“放缩法”和“裂项求和”即可证明

解答 解:(Ⅰ)∵an是Sn与2的等差中项,∴2an=Sn+2 …①
当n=1时,a1=2;
n≥2时,2an-1=Sn-1+2   …②;
∴由①-②得:an=2an-1
∴{an}是一个以2为首项,以2为公比的等比数列,
∴an=2n
又∵点P(bn,bn+1)在直线x-y+2=0上,
∴bn-bn+1+2=0即:bn+1-bn=2,
又b1=1,∴{bn}是一个以1为首项,以2为公差的等差数列,
∴bn=2n-1.
(Ⅱ)由(Ⅰ)知:Bn=$\frac{n(2n-1+1)}{2}={n}^{2}$.
∴$\frac{n}{(n+1){n}^{2}}=\frac{1}{(n+1)n}=\frac{1}{n}-\frac{1}{n+1}$,
∴$\frac{1}{2{B}_{1}}$+$\frac{2}{3{B}_{2}}$+…+$\frac{n}{(n+1){B}_{n}}$=$1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+…+\frac{1}{n}-\frac{1}{n+1}$=1-$\frac{1}{n+1}$<1.

点评 本题考查了“当n≥2时,an=Sn-Sn-1”求an、等差数列与等比数列的通项公式及其前n项和公式利用了“裂项求和”,考查了推理能力和计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.下列四个图形中不可能是函数y=f(x)图象的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.同时抛掷两枚质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),观察向上的点数,则两个点数之积不小于10的概率为$\frac{5}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若a=log2.10.6,b=2.10.6,c=log0.50.6,则a,b,c的大小关系是(  )
A.a>b>cB.b>c>aC.c>b>aD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.《九章算术》是我国古代一部重要的数学著作,书中有如下问题:“今有良马与驽马发长安,至齐.齐去长安三千里,良马初日行一百九十三里,日增一十三里,驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马,问几何日相逢.”其大意为:“现在有良马和驽马同时从长安出发到齐去,已知长安和齐的距离是3000里,良马第一天行193里,之后每天比前一天多行13里,驽马第一天行97里,之后每天比前一天少行0.5里.良马到齐后,立刻返回去迎驽马,多少天后两马相遇.”试确定离开长安后的第24天,两马相逢.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设m,n是两条不同的直线,α,β是两个不同的平面.下列命题正确的是(  )
A.若m?α,n?β,m⊥n,则α⊥βB.若α∥β,m⊥α,n∥β,则 m⊥n
C.若α⊥β,m⊥α,n∥β,则m∥nD.若α⊥β,α∩β=m,n⊥m,则n⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{ax+1}{e^x}$,a∈R.
(Ⅰ)若曲线y=f(x)在点(0,f(0))处切线斜率为-2,求函数f(x)的最小值;
(Ⅱ)若函数f(x)在区间(0,1)上无极值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设△ABC的三个内角A,B,C所对应的边为a,b,c,若A,B,C依次成等差数列且a2+c2=kb2,则实数k的取值范围是(1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.不等式(x-1)2>4的解集是{x|x<-1或x>3}.

查看答案和解析>>

同步练习册答案