精英家教网 > 高中数学 > 题目详情
15.同时抛掷两枚质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),观察向上的点数,则两个点数之积不小于10的概率为$\frac{5}{12}$.

分析 基本事件总数,列表求出两个点数之积不小于10包含的基本事件有15个,由此能求出两个点数之积不小于10的概率.

解答 解:同时抛掷两枚质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),
观察向上的点数,基本事件总数n=6×6=36,列表如下:

(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)
(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)
(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)
(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)
(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)
(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)
两个点数之积不小于10包含的基本事件有15个,
∴两个点数之积不小于10的概率p=$\frac{15}{36}$=$\frac{5}{12}$.
故答案为:$\frac{5}{12}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知全集U={1,2,3,4,5,6},集合A={x|x2-3x+2=0},B={x|2≤x≤4,x∈Z},则集合∁U(A∪B)中元素的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)为二次函数,且f(x-1)+f(x)=2x2+4.
( I)求f(x)的解析式;
( II)当x∈[t,t+2],t∈R时,求函数f(x)的最小值(用t表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.给定条件:
①?x0∈R,f(-x0)=-f(x0);
②?x∈R,f(1-x)=f(1+x)的函数个数是下列三个函数:
y=x3,y=|x-1|,y=cosπx中,
同时满足条件①②的函数个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}是等差数列,且a2=-1,数列{bn}满足bn-bn-1=an(n=2,3,4,…),且b1=b3=1.
(Ⅰ)求a1的值;
(Ⅱ)求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若集合M={x∈N|x<6},N={x|(x-2)(x-9)<0},则 M∩N=(  )
A.{3,4,5}B.{x|2<x<6}C.{x|3≤x≤5}D.{2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设函数f(x)=$\left\{\begin{array}{l}1+{log_6}x,x≥4\\ f({x^2}),x<4\end{array}$,则f(3)+f(4)=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设数列{an}的前n项和为Sn,设an是Sn与2的等差中项,数列{bn}中,b1=1,点P(bn,bn+1)在直线y=x+2上.
(Ⅰ)求an,bn
(Ⅱ)若数列{bn}的前n项和为Bn,比较$\frac{1}{2{B}_{1}}$+$\frac{2}{3{B}_{2}}$+…+$\frac{n}{(n+1){B}_{n}}$与1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一个几何体的三视图都是边长为1的正方形,如图,则该几何体的体积是(  )
A.$\frac{1}{12}$B.$\frac{1}{3}$C.$\frac{\sqrt{2}}{4}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案