【题目】斐波那契数列满足: .若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前项所占的格子的面积之和为,每段螺旋线与其所在的正方形所围成的扇形面积为,则下列结论错误的是( )
A. B.
C. D.
科目:高中数学 来源: 题型:
【题目】如图,三棱锥,侧棱,底面三角形为正三角形,边长为,顶点在平面上的射影为,有,且.
(Ⅰ)求证: 平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)线段上是否存在点使得⊥平面,如果存在,求的值;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】潍坊文化艺术中心的观光塔是潍坊市的标志性建筑,某班同学准备测量观光塔的高度(单位:米),如图所示,垂直放置的标杆的高度米,已知, .
(1)该班同学测得一组数据: ,请据此算出的值;
(2)该班同学分析若干测得的数据后,发现适当调整标杆到观光塔的距离(单位:米),使与的差较大,可以提高测量精确度,若观光塔高度为136米,问为多大时, 的值最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在数列中, ,其前项和为,满足,其中.
(1)设,证明:数列是等差数列;
(2)设为数列的前项和,求;
(3)设数列的通项公式为为非零整数),试确定的值,使得对任意,都有数列为递增数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知左、右焦点分别为的椭圆与直线相交于两点,使得四边形为面积等于的矩形.
(1)求椭圆的方程;
(2)过椭圆上一动点(不在轴上)作圆的两条切线,切点分别为,直线与椭圆交于两点, 为坐标原点,求的面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数.
(1)若函数是奇函数,求实数的值;
(2)若对任意的实数,函数(为实常数)的图象与函数的图象总相切于一个定点.
① 求与的值;
② 对上的任意实数,都有,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com