精英家教网 > 高中数学 > 题目详情

在长方体ABCD-A1B1C1D1中(如图),AD=AA1=1,AB=2,点E是AB的中点.
求:(1)异面直线AD1与EC所成的角
(2)点D到平面ECD1的距离.

解:(1)证明取CD的中点Q,则AQ平行与EC,所以∠D1AQ是所求的角------(2分)
因为AD=1,AB=2,并且Q为CD的中点,
所以AQ=
又因为在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,
所以AD1=,QD1=
所以△D1AQ为等边三角形,∠D1AQ=-------------(5分)
所以异面直线AD1与EC所成的角为-------(6分)
(2)设点D到平面ECD1的距离为h-----------(7分)
因为=---------(9分)
所以
所以----------(11分)
所以点D到平面ECD1的距离为------------(12分)
分析:(1)证明取CD的中点Q,则AQ平行与EC,所以∠D1AQ是所求的角,再根据题意求出三角形的边长,进而利用解三角形的有关知识求出答案.
(2)设点D到平面ECD1的距离为h,由=,进而得到答案.
点评:本题主要考查空间异面直线的夹角问题与点到平面的距离,而空间角解决的关键是做角,由图形的结构及题设条件正确作出平面角来,再结合解三角形的有关知识求出答案即可,求点到平面的距离的方法:一般是利用等体积法或者借助于向量求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在长方体ABCD-A'B'C'D'中,AB=
3
,AD=
3
,AA′=1,则AA′和BC′所成的角是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在长方体ABCD-A′B′C′D′中,用截面截下一个棱锥C-A′DD′,求棱锥C-A′DD′的体积与剩余部分的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海) 如图,在长方体ABCD-A′B′C′D′中,AB=2,AD=1,AA′=1.证明直线BC′平行于平面D′AC,并求直线BC′到平面D′AC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•青浦区二模)(理)在长方体ABCD-A'B'C'D'中,AB=2,AD=1,AA'=1.
求:
(1)顶点D'到平面B'AC的距离;
(2)二面角B-AC-B'的大小.(结果用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知在长方体ABCD-A′B′C′D′中,点E为棱CC′上任意一点,AB=BC=2,CC′=1.
(Ⅰ)求证:平面ACC′A′⊥平面BDE;
(Ⅱ)若点P为棱C′D′的中点,点E为棱CC′的中点,求二面角P-BD-E的余弦值.

查看答案和解析>>

同步练习册答案