精英家教网 > 高中数学 > 题目详情
12.设变量x,y满足约束条件$\left\{\begin{array}{l}{y≤x}\\{x+y≥2}\\{y≥3x-6}\end{array}\right.$,则目标函数z=2x+y的最大值为9.

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.

解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点A时,直线y=-2x+z的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{y=x}\\{y=3x-6}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=3}\end{array}\right.$,即A(3,3)
将A(3,3)的坐标代入目标函数z=2x+y,
得z=2×3+3=9.即z=2x+y的最大值为9.
故答案为:9

点评 本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.有5名优秀毕业生到母校的3个班去作学习经验交流,则每个班至少去一名的不同分派方法种数为(  )
A.150B.180C.200D.280

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.z=1+i,$\overline{z}$为复数z的共轭复数,则z+$\overrightarrow{z}+|\overrightarrow{z}|-1$=1+$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知{an}中,a1=1,其前n项和为Sn,且满足an=$\frac{2{{S}_{n}}^{2}}{2{S}_{n}-1}$.
(Ⅰ)求证:数列{$\frac{1}{{S}_{n}}$}是等差数列;
(Ⅱ)证明:S1+$\frac{1}{2}$S2+$\frac{1}{3}$S3+…+$\frac{1}{n}$Sn<$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知命题p:x>0,q:x>sinx,则p是q的(  )
A.充分必要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设全集U=R,集合A={x|-x2-3x>0},B={x|x<m},则∁RA={x|x≥0或x≤-3},若A⊆B,则m的取值范围为m≥0,若A∩B=∅,则m的取值范围为m≤-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知O是△ABC的外接圆圆心,$|\overrightarrow{AB}|=4$,D是BC中点,若$\overrightarrow{AO}•\overrightarrow{AD}=5$,则$|\overrightarrow{AC}|$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.定义在R上的函数f(x)满足$f(x)=\frac{f'(1)}{2}•{e^{2x-2}}+{x^2}-2f(0)x$,$g(x)=f(\frac{x}{2})-\frac{1}{4}{x^2}+(1-a)x+a$.
(1)求函数f(x)的解析式;
(2)求函数g(x)的单调区间;
(3)如果s、t、r满足|s-r|≤|t-r|,那么称s比t更靠近r.当a≥2且x≥1时,试比较$\frac{e}{x}$和ex-1+a哪个更靠近lnx,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=|x-a|+1,a∈R
(1)当a=4时,解不等式f(x)<1+|2x+1|;
(2)若f(x)≤2的解集为[0,2],$\frac{1}{m}$+$\frac{1}{n}$=a(m>0,n>0),求证:m+2n≥3+2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案