精英家教网 > 高中数学 > 题目详情
1.以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=4cosθ,直线l的参数方程为$\left\{\begin{array}{l}{x=-1+t}\\{y=kt}\end{array}\right.$,(t为参数).
(1)若直线l与曲线C有两个不同点的交点,求实数k的取值范围;
(2)当直线l与曲线C相切时,求直线l的极坐标方程.

分析 (1)曲线C的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,利用$\left\{\begin{array}{l}{{ρ}^{2}={x}^{2}+{y}^{2}}\\{x=ρcosθ}\end{array}\right.$可得直角坐标方程.直线l的参数方程为$\left\{\begin{array}{l}{x=-1+t}\\{y=kt}\end{array}\right.$,化为y=k(x+1).利用点到直线的距离公式求出圆心到直线的距离d,根据直线l与曲线C有两个不同点的交点,可得d<R解出即可.
(2)由(1)可知:当直线l与曲线C相切时,d=R,解出k即可得出.

解答 解:(1)曲线C的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,化为x2+y2=4x,配方为(x-2)2+y2=4.
直线l的参数方程为$\left\{\begin{array}{l}{x=-1+t}\\{y=kt}\end{array}\right.$,化为y=k(x+1).
∵直线l与曲线C有两个不同点的交点,
∴$\frac{|2k-0+k|}{\sqrt{{k}^{2}+1}}$<2,解得$-\frac{2\sqrt{5}}{5}<k<\frac{2\sqrt{5}}{5}$.
∴实数k的取值范围是$(-\frac{2\sqrt{5}}{5},\frac{2\sqrt{5}}{5})$;
(2)由(1)可知:当直线l与曲线C相切时,
可得:k=$±\frac{2\sqrt{5}}{5}$.
∴$y=±\frac{2\sqrt{5}}{5}(x+1)$,
化为极坐标方程为:2ρcosθ±$\sqrt{5}$ρsinθ+2=0.

点评 本题考查了极坐标方程与直角坐标方程的互化、直线与圆的位置关系、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.某仓库为了保持内温度,四周墙上装有如图所示的通风设施,该设施的下部是等边三角形ABC,其中AB=2米,上部是半圆,点E为AB的中点,△EMN是通风窗,(其余部分不通风)MN是可以沿设施的边框上下滑动且保持与AB平行的伸缩杆(MN和AB不重合).
(1)设MN与C之间的距离为x米,试将△EMN的面积S表示成x的函数S=f(x);
(2)当MN与C之间的距离为多少时,△EMN面积最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设数列{an}的前n项和为Sn,满足tSn=nan,且a1<a2,求常数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知集合M={y|y=2x2+1,x∈R },N={x∈R|y=$\sqrt{1-x}+1$},则M∪N=R,M∩N={1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在比赛中,如果运动员甲胜运动员乙的概率为$\frac{2}{3}$,那么在五次比赛中,运动员甲恰有三次获胜的概率为$\frac{80}{243}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设集合P={-1,0,1},Q={x|$\sqrt{x}$<$\sqrt{2}$},则P∩Q=(  )
A.{0,1}B.{1}C.{0}D.{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在某次考试中,共有10道题供选择,已知该生会答其中的6道题,随机从中抽5道题供该生回答,答对3道题则及格,求该生在第一题不回答的情况下及格的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知点A(-2,0),B(2,0),动点P满足|$\overrightarrow{PB}$|,$\frac{1}{2}$|$\overrightarrow{PA}$|,2$\sqrt{3}$成等差数列.
(1)证明动点P的轨迹是双曲线,并求出双曲线的方程;
(2)若直线y=kx+m(k≠0.m≠0)与双曲线交于不同的两个点C,D,且C,D两点都在以Q(0,-1)为圆心的同一圆上,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|x+$\frac{1}{2}$|+|x-$\frac{3}{2}$|.
(1)求不等式f(x)≤3的解集;
(2)若关于x的不等式f(x)<$\frac{1}{2}$|1-a|的解集是空集,求实数a的取值范围.

查看答案和解析>>

同步练习册答案