精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)的图象如图,则满足f(
2x+1
x-1
)•f(5)≤0的x取值范围为(  )
A、[-2,1)
B、[-1,1]
C、[1,2]
D、[2,3]
考点:函数的图象
专题:函数的性质及应用
分析:根据函数图象确定f(5)<0,利用函数取值范围和图象之间的关系进行求解即可.
解答: 解:由图象知f(5)<0,且f(1)=0,
则不等式f(
2x+1
x-1
)•f(5)≤0等价为f(
2x+1
x-1
)≥0,
由图象知
2x+1
x-1
≤1,
2x+1
x-1
-1=
x+2
x-1
≤0,
解得-2≤x<1,
故选:A
点评:本题主要考查不等式的求解,根据函数图象确定函数值的符号关系是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设全集U={x∈Z|-2<x<4},A={-1,0},B={0,1,2},则(∁UA)∩B=(  )
A、{0}
B、{-2,-1}
C、{1,2}
D、{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:

投掷四枚不同的金属硬币A、B、C、D,假定A、B两枚正面向上的概率均为
1
2
,另两枚C、D为非均匀硬币,正面向上的概率均为a(0<a<1),把这四枚硬币各投掷一次,设X表示正面向上的枚数.
(1)若A、B出现一枚正面向上一枚反面向上与C、D出现两枚正面均向上的概率相等,求a的值;
(2)求X的分布列及数学期望(用a表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x+a|在(-∞,-1)上是单调函数,则a的取值范围是(  )
A、(-∞,1]
B、(-∞,-1]
C、[-1,+∞)
D、[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn是数列{an}的前n项和,且满足Sn2=n2an+Sn-12(n≥2,n∈N+)又已知a1=0,an≠0,n=2,3,4…
(1)计算a2,a3,并求数列{a2n}的通项公式;
(2)若bn=(
1
2
an,Tn为数列{bn}的前n项和,求证:Tn
7
4

查看答案和解析>>

科目:高中数学 来源: 题型:

用反证法证明命题:“如果a>b>0,那么|a|>|b|”时,假设的内容应是(  )
A、|a|=|b|
B、|a|<|b|
C、|a|≤|b|
D、|a|>|b|且|a|=|b|

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在{x|x≠0,x∈R}上的函数f(x)满足对于任意的x1,x2,有f(x1•x2)=f(x1)+f(x2
(1)求f(1)和f(-1);
(2)判断函数f(x)的奇偶性,并证明你的结论;
(3)如果f(
6
)=1,且f(x)在(0,+∞)上是增函数,问是否存在正实数a,使f(x)+f(x-a)≤2在区间[1-a,1+a]上恒成立,若存在,试求出a的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
a-e x
1+e x
(a∈R).
(1)若f(x)为R上的奇函数,求a的值;
(2)若f(x)在R上为减函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标平面内,以坐标原点O为极点,x轴的非负数半轴为极轴建立极坐标系.已知曲线C的极坐标方程为ρ=4cosθ,直线l的参数方程为
x=1+
1
2
t
y=-3
3
+
3
2
t
(t为参数),直线l与曲线C相交于A,B两点.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)在直角坐标系中,求线段AB的中点坐标.

查看答案和解析>>

同步练习册答案