精英家教网 > 高中数学 > 题目详情
已知Sn是数列{an}的前n项和,且满足Sn2=n2an+Sn-12(n≥2,n∈N+)又已知a1=0,an≠0,n=2,3,4…
(1)计算a2,a3,并求数列{a2n}的通项公式;
(2)若bn=(
1
2
an,Tn为数列{bn}的前n项和,求证:Tn
7
4
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由Sn2=n2an+Sn-12(n≥2,n∈N+),a1=0,an≠0,分别取n=2,3即可得出a2,a3.由Sn2=n2an+Sn-12,利用an=Sn-Sn-1,可得Sn+Sn-1=n2,利用递推式可得an+1+an=2n+1,变形为an+1-(n+1)=-(an-n),利用等比数列的通项公式即可得出an,进而得到a2n
(2)由(1)可知:an=
1,n=1
n-2,n=2k-1(k≥2,k∈N*)
n+2,n=2k(k≥1,k∈N*)
.可得T2k=1+[(
1
2
)1+(
1
2
)3
+…+(
1
2
)2k-3]
+[(
1
2
)4+(
1
2
)6+…+(
1
2
)2k+2]
,利用等比数列的前n项和公式即可得出.即可证明.
解答: (1)解:∵Sn2=n2an+Sn-12(n≥2,n∈N+),a1=0,an≠0,
∴取n=2可得:
S
2
2
=22a2+
S
2
1
,即(0+a2)2=4a2+0,解得a2=4.
同理取n=3时可得:a3=1.
由Sn2=n2an+Sn-12,可得Sn2=n2(Sn-Sn-1)+Sn-12
化为(Sn-Sn-1)(Sn+Sn-1-n2)=0,
Sn+Sn-1=n2
∴Sn+1+Sn=(n+1)2
∴an+1+an=2n+1,
化为an+1-(n+1)=-(an-n),
∴数列{an-n}是从第二项开始为等比数列,公比为-1,首项为a2-2=2.
∴an-n=2×(-1)n-2
an=n+2(-1)n-2
∴a2n=2n+2,
∴数列{a2n}的通项公式为a2n=2n+2.

(2)证明:由(1)可知:an=
0,n=1
n-2,n=2k-1(k≥2)
n+2,n=2k(k≥1)
n∈N*
∴T2k=1+[(
1
2
)1+(
1
2
)3
+…+(
1
2
)2k-3]
+[(
1
2
)4+(
1
2
)6+…+(
1
2
)2k+2]

=1+
1
2
[1-(
1
4
)k-1]
1-
1
4
+
1
16
[1-(
1
4
)k]
1-
1
4
<1+
2
3
+
1
12
7
4

而T2k-1<T2k
因此对于?n∈N*,Tn
7
4
点评:本题考查了递推式的应用、等比数列的定义及其通项公式及其前n选和公式,考查了分类讨论思想方法,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某学校高一、高二、高三年级的学生人数之比是3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高三年级抽取
 
名学生.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2是椭圆和双曲线的公共焦点,M是它们的一个公共点,且∠F1MF2=
π
3
,则椭圆和双曲线的离心率的倒数之和的最大值为(  )
A、2
B、
2
3
3
C、
4
3
3
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
(1)
AB
+
BC
+
CA

(2)(
AB
+
MB
)+
BO
+
OM

(3)
OA
+
OC
+
BO
+
CO

(4)
AB
-
AC
+
BD
-
CD

(5)
OA
-
OD
+
AD

(6)
AB
-
AD
-
DC

(7)
NQ
+
QP
+
MN
-
MP

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式为an=
-6n+5(n为奇数)
2n(n为偶数)
,求这个数列的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象如图,则满足f(
2x+1
x-1
)•f(5)≤0的x取值范围为(  )
A、[-2,1)
B、[-1,1]
C、[1,2]
D、[2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
lnx
x
+2,求f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是由正数组成的等比数列,Sn为其前n项和.已知a2a4=1,S3=7,则S5=(  )
A、
15
2
B、
17
2
C、
31
4
D、
33
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,a1=1,an≠0,anan+1=4Sn-1
(1)求数列{an}的通项公式;
(2)设bn=
1
anan+1
,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案