精英家教网 > 高中数学 > 题目详情

【题目】已知一定点,及一定直线,以动点为圆心的圆过点,且与直线相切

(Ⅰ)求动点的轨迹的方程

(Ⅱ)设在直线上,直线分别与曲线相切于为线段的中点求证:且直线恒过定点

【答案】(1)动点的轨迹的方程为;(2)见解析.

【解析】

分析:(1)利用直接法,即可求动点的轨迹的方程

(2)依题意可设∴切线同理可得切线PB,故可得到,从而整理可得答案.

详解:(1) ∵圆过点,且与直线相切

∴点到点的距离等于点到直线的距离

∴点的轨迹是以为焦点以直线为准线的一抛物线

动点的轨迹的方程为.

(2)依题意可设

,∴,∴

∴切线的斜率

∴切线

同理可得切线的斜率

,∴

故方程有两根,∴

,∴

为线段的中点,∴

又由

同理可得

故直线的方程为故直线恒过定点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在直角坐标系中,曲线C由以原点为圆心,半径为2的半圆和中心在原点,焦点在x轴上的半椭圆构成,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.

(1)写出曲线C的极坐标方程;

(2)已知射线与曲线C交于点M,点N为曲线C上的动点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【题目】已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.

(1)证明:坐标原点O在圆M上;

(2)设圆M过点P(4,-2),求直线l与圆M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,为山脚两侧共线的3点,在山顶处测得3点的俯角分别为,计划沿直线开通穿山隧道,为求出隧道的长度,你认为还需要直接测量出中哪些线段的长度?根据条件,并把你认为需要测量的线段长度作为已知量,写出计算隧道长度的运算步骤.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

(1)讨论函数的单调性;

(2)当时,恒成立,求整数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《数书九章》中有“天池盆测雨”题,大概意思如下:在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为2尺8寸,盆底直径为l尺2寸,盆深1尺8寸.若盆中积水深9寸,则平均降雨量是(注:①平均降雨量等于盆中积水体积除以盆口面积;②1尺等于10寸)( )

A. 3寸B. 4寸C. 5寸D. 6寸

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,点在椭圆上.

)求椭圆的标准方程.

)是否存在斜率为的直线,使得当直线与椭圆有两个不同交点时,能在直线上找到一点,在椭圆上找到一点,满足?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线是抛物线上的两点,是坐标原点,且.

(1)若,求的面积;

(2)设是线段上一点,若的面积相等,求的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的离心率为,过其右焦点作斜率为的直线,交双曲线的两条渐近线于两点(点在轴上方),则( )

A.B.C.D.

查看答案和解析>>

同步练习册答案