精英家教网 > 高中数学 > 题目详情
证明:若函数y=f(x)满足f(a+x)+f(a-x)=0,则函数y=f(x)的图象关于点(a,0)对称.
考点:函数的图象
专题:函数的性质及应用
分析:设出函数图象上的任意点的坐标,判断关于(a,0)对称点的坐标也在函数的图象上即可.
解答: 解:设函数y=f(x)图象上的任意一点的坐标为(x,f(x)),
则(x,f(x))关于点(a,0)对称点的坐标(2a-x,-f(2a-x)),
因为f(a+x)+f(a-x)=0,即f(a+x)=-f(a-x),
所以-f(2a-x)=-f(a+(a-x))=f(a-(a-x))=f(x),
所以函数y=f(x)满足f(a+x)+f(a-x)=0,
则函数y=f(x)的图象关于点(a,0)对称.
点评:本题主要考查函数的性质--对称性的应用.函数的性质包括定义域、值域、单调性、奇偶性、对称性、周期性,研究函数一般就从这几个方面入手.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=x2-4x+5,x∈[1,2],则该函数值域为(  )
A、[1,+∞]
B、[1,5]
C、[1,2]
D、[2,5]

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两艘货轮都要在某个泊位停靠6小时,假定它们在一昼夜的时间段中随机到达,试求两船中有一艘在停泊位时,另一艘船必须等待的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos2(x-
π
6
)-sin2x.
(Ⅰ)求函数f(x)的单调增区间及最小正周期;
(Ⅱ)若对于任意的x∈[0,
π
2
],都有f(x)≤c,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)是定义在(0,+∞)上的增函数,f(xy)=f(x)+f(y)
(1)证明:f(
x
y
)=f(x)-f(y)
(2)已知f(3)=1且f(a)>f(a-1)+2,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα+cosα=-
3
5
5
,且|sinα|>|cosα|,求cos3α-sin3α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}是一个首项为a1、公差为d的等差数列.
(Ⅰ)若a1,a2,a5也成等差数列,求公差d的值;
(Ⅱ)若a1=-
1
2
,d=-
1
14
,从数列{an}中取出第2项、第6项作为一个等比数列{bn}的第1项、第2项,求{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax+blnx-1,设曲线y=f(x)在点(1,f(1))处的切线为y=0.
(Ⅰ)求实数a,b的值;
(Ⅱ)设函数g(x)=mf(x)+
x2
2
-mx,其中1<m<3.求证:当x∈[1,e]时,-
3
2
(1+ln3)<g(x)<
e2
2
-2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的定义域为R,且对任意a,b∈R,都有f(a+b)=f(a)+f(b),且当x>0时,f(x)<0恒成立.
(1)先判断函数y=f(x)的单调性再给出证明;
(2)证明函数y=f(x)是奇函数.

查看答案和解析>>

同步练习册答案