精英家教网 > 高中数学 > 题目详情
4.已知等差数列{an}满足a4-a2=2,且a1,a3,a7成等比数列.
(1)求{an}的通项公式;
(2)设${b_n}=\frac{a_n}{{{a_{n-1}}}}+\frac{{{a_{n-1}}}}{a_n}-2$,求数列{bn}的前n项和Sn

分析 (1)设出等差数列的公差,由已知列式求得首项和公差,则{an}的通项公式可求;
(2)把{an}的通项公式代入${b_n}=\frac{a_n}{{{a_{n-1}}}}+\frac{{{a_{n-1}}}}{a_n}-2$,整理后利用裂项相消法求数列{bn}的前n项和Sn

解答 解:(1)设等差数列{an}的公差为d,
由a1,a3,a7成等比数列,得$\left\{{\begin{array}{l}{2d=2}\\{{a_3}^2={a_1}•{a_7}}\end{array}}\right.$,即$\left\{{\begin{array}{l}{d=1}\\{{{({{a_1}+2d})}^2}={a_1}•({{a_1}+6d})}\end{array}}\right.$,解得$\left\{{\begin{array}{l}{d=1}\\{{a_1}=2}\end{array}}\right.$.
∴an=n+1;
(2)由(1)可知,${b_n}=\frac{a_n}{{{a_{n-1}}}}+\frac{{{a_{n-1}}}}{a_n}-2$=$\frac{n+1}{n}+\frac{n}{n+1}-2$
=$\frac{(n+1)^{2}+{n}^{2}-2{n}^{2}-2n}{n(n+1)}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$.
∴${S_n}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n}-\frac{1}{n+1}=\frac{n}{n+1}$.

点评 本题考查等比数列的性质,考查等差数列通项公式的求法,训练了裂项相消法求数列的前n项和,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=tan(x+\frac{π}{4})$.
(Ⅰ)求f(x)的定义域;
(Ⅱ)设β∈(0,π),且$f(β)=2cos(β-\frac{π}{4})$,求β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若对圆(x-1)2+(y-1)2=1上任意一点P(x,y),|3x-4y+a|+|3x-4y-9|的取值与x,y无关,则实数a的取值范围是(  )
A.a≤-4B.-4≤a≤6C.a≤-4或a≥6D.a≥6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.学校为了了解高三学生每天自主学习中国古典文学的时间,随机抽取了高三男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如表:
古文迷非古文迷合计
男生262450
女生302050
合计5644100
(Ⅰ)根据表中数据能否判断有60%的把握认为“古文迷”与性别有关?
(Ⅱ)现从调查的女生中按分层抽样的方法抽出5人进行调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;
(Ⅲ)现从(Ⅱ)中所抽取的5人中再随机抽取3人进行调查,记这3人中“古文迷”的人数为ξ,求随机变量ξ的分布列与数学期望.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.500.400.250.050.0250.010
k00.4550.7081.3213.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知圆C的参数方程为$\left\{\begin{array}{l}x=cosθ\\ y=sinθ+2\end{array}$(θ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为sinθ+cosθ=$\frac{1}{ρ}$.
(1)求圆C的普通方程和直线l的直角坐标方程;
(2)求直线l被圆C所截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,点M是双曲线E的渐近线上的一点,MF1⊥MF2,sin∠MF1F2=$\frac{1}{3}$,则该双曲线的离心率为$\frac{9}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,多面体ABCDE中,AB=AC,平面BCDE⊥平面ABC,BE∥CD,CD⊥BC,BE=1,BC=2,CD=3,M为BC的中点.
(Ⅰ)若N是棱AE上的动点,求证:DE⊥MN;
(Ⅱ)若平面ADE与平面ABC所成锐二面角为60°,求棱AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数$f(x)=\left\{\begin{array}{l}xlnx-3x,x>0\\{x^2}+\frac{3}{2}x,x≤0\end{array}\right.$的图象上有且只有四个不同的点关于直线y=-1的对称点在直线y=kx-1上,则实数k的取值范围是(  )
A.$({\frac{2}{7},1})$B.$({\frac{1}{3},3})$C.$({\frac{1}{2},2})$D.$({2,\frac{7}{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在中国文字语言中有回文句,如:“中国出人才人出国中.”其实,在数学中也有回文数.回文数是指从左到右与从右到左读都一样的正整数,如:3位回文数:101,111,121,…,191,202,…,999.则5位回文数有(  )
A.648个B.720个C.900个D.1000个

查看答案和解析>>

同步练习册答案