精英家教网 > 高中数学 > 题目详情
13.已知函数$f(x)=\left\{\begin{array}{l}xlnx-3x,x>0\\{x^2}+\frac{3}{2}x,x≤0\end{array}\right.$的图象上有且只有四个不同的点关于直线y=-1的对称点在直线y=kx-1上,则实数k的取值范围是(  )
A.$({\frac{2}{7},1})$B.$({\frac{1}{3},3})$C.$({\frac{1}{2},2})$D.$({2,\frac{7}{2}})$

分析 令直线y=-kx-1与f(x)的图象有4个交点,作出f(x)的函数图象,求出f(x)过点(0,-1)的切线方程,结合函数图象即可得出k的范围.

解答 解:直线y=kx-1关于直线y=-1的对称直线是y=-kx-1,
则直线y=-kx-1与f(x)的图象有四个交点,
作出y=f(x)与直线y=-kx-1的函数图象如图所示:

设直线y=k1x-1与y=x2+$\frac{3}{2}$x(x≤0)相切,切点为(x1,y1),
则$\left\{\begin{array}{l}{{y}_{1}={k}_{1}{x}_{1}-1}\\{{y}_{1}={{x}_{1}}^{2}+\frac{3}{2}{x}_{1}}\\{2{x}_{1}+\frac{3}{2}={k}_{1}}\end{array}\right.$,解得x1=-1,y1=-$\frac{1}{2}$,k1=-$\frac{1}{2}$,
设直线y=k2x-1与y=xlnx-3x(x>0)相切,切点为(x2,y2),
则$\left\{\begin{array}{l}{{y}_{2}={k}_{2}{x}_{2}-1}\\{{y}_{2}={x}_{2}ln{x}_{2}-3{x}_{2}}\\{{k}_{2}=ln{x}_{2}-2}\end{array}\right.$,解得x2=1,y2=-3,k2=-2,
∴-2$<-k<-\frac{1}{2}$,∴$\frac{1}{2}<k<2$.
故选:C.

点评 本题考查了方程解与函数图象的关系,导数的几何意义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知全集N={x|x>0},M={y|y=cos$\frac{x}{2}$},则N∩M=(  )
A.{x|x>0}B.{x|x≥-1}C.{x|0<x≤1}D.{x|-1≤x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知等差数列{an}满足a4-a2=2,且a1,a3,a7成等比数列.
(1)求{an}的通项公式;
(2)设${b_n}=\frac{a_n}{{{a_{n-1}}}}+\frac{{{a_{n-1}}}}{a_n}-2$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设函数f(x)=(x-a)(x-b)(x-c)(其中a>1,b>1),x=0是f(x)的一个零点,曲线y=f(x)在点(1,f(1))处的切线平行于x轴,则a+b的最小值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.定义在R上的函数f(x)满足:f(x)=$\frac{1}{2}$f(x-2π),且当x∈[0,2π)时,f(x)=8sinx,则函数g(x)=f(x)-lgx的零点个数是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右顶点为A(2,0),左、右焦点分别为F1、F2,过点A且斜率为$\frac{1}{2}$的直线与y轴交于点P,与椭圆交于另一个点B,且点B在x轴上的射影恰好为点F1
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过点P且斜率大于$\frac{1}{2}$的直线与椭圆交于M,N两点(|PM|>|PN|),若S△PAM:S△PBN=λ,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=2cosφ}\\{y=sinφ}\end{array}\right.$(其中φ为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ(tanα•cosθ-sinθ)=1(α为常数,0<α<π,且α≠$\frac{π}{2}$),点A,B(A在x轴下方)是曲线C1与C2的两个不同交点.
(1)求曲线C1普通方程和C2的直角坐标方程;
(2)求|AB|的最大值及此时点B的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ex(x2-2x+a)(其中a∈R,a为常数,e为自然对数的底数).
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)设曲线y=f(x)在(a,f(a))处的切线为l,当a∈[1,3]时,求直线l在y轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.复数$\frac{-2-i}{i}$=(  )
A.1-2iB.1+2iC.-1-2iD.-1+2i

查看答案和解析>>

同步练习册答案