精英家教网 > 高中数学 > 题目详情
18.如图,椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右顶点为A(2,0),左、右焦点分别为F1、F2,过点A且斜率为$\frac{1}{2}$的直线与y轴交于点P,与椭圆交于另一个点B,且点B在x轴上的射影恰好为点F1
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过点P且斜率大于$\frac{1}{2}$的直线与椭圆交于M,N两点(|PM|>|PN|),若S△PAM:S△PBN=λ,求实数λ的取值范围.

分析 (Ⅰ)利用已知条件列出方程组,求解椭圆的几何量,然后求解椭圆C的方程.
(Ⅱ)利用三角形的面积的比值,推出线段的比值,得到$\overrightarrow{PM}=-\frac{λ}{2}\overrightarrow{PN}$.设MN方程:y=kx-1,M(x1,y1),N(x2,y2),联立方程$\left\{\begin{array}{l}y=kx-1\\ \frac{x^2}{4}+\frac{y^2}{3}=1\end{array}\right.$,利用韦达定理,求出$\overrightarrow{PM}=({x_1},{y_1}+1),\overrightarrow{PN}=({x_2},{y_2}+1)$,解出${x_1}=-\frac{λ}{2}{x_2}$,将${x_1}=-\frac{λ}{2}{x_2}$椭圆方程,然后求解实数λ的取值范围.

解答 解:(Ⅰ)因为BF1⊥x轴,得到点$B(-c,-\frac{b^2}{a})$,
所以$\left\{\begin{array}{l}a=2\\ \frac{b^2}{a(a+c)}=\frac{1}{2}\\{a^2}={b^2}+{c^2}\end{array}\right.⇒\left\{\begin{array}{l}a=2\\ b=\sqrt{3}\\ c=1\end{array}\right.$,所以椭圆C的方程是$\frac{x^2}{4}+\frac{y^2}{3}=1$.
(Ⅱ)因为$\frac{{{S_{△PAM}}}}{{{S_{△PBN}}}}=\frac{{\frac{1}{2}PA•PM•sin∠APM}}{{\frac{1}{2}PB•PN•sin∠BPN}}=\frac{2•PM}{1•PN}=λ⇒\frac{PM}{PN}=\frac{λ}{2}(λ>2)$,
所以$\overrightarrow{PM}=-\frac{λ}{2}\overrightarrow{PN}$.由(Ⅰ)可知P(0,-1),设MN方程:y=kx-1,M(x1,y1),N(x2,y2),
联立方程$\left\{\begin{array}{l}y=kx-1\\ \frac{x^2}{4}+\frac{y^2}{3}=1\end{array}\right.$得:(4k2+3)x2-8kx-8=0.即得$\left\{\begin{array}{l}{x_1}+{x_2}=\frac{8k}{{4{k^2}+3}}\\{x_1}•{x_2}=\frac{-8}{{4{k^2}+3}}\end{array}\right.$(*)
又$\overrightarrow{PM}=({x_1},{y_1}+1),\overrightarrow{PN}=({x_2},{y_2}+1)$,有${x_1}=-\frac{λ}{2}{x_2}$,
将${x_1}=-\frac{λ}{2}{x_2}$代入(*)可得:$\frac{{{{(2-λ)}^2}}}{λ}=\frac{{16{k^2}}}{{4{k^2}+3}}$.
因为$k>\frac{1}{2}$,有$\frac{{16{k^2}}}{{4{k^2}+3}}=\frac{16}{{\frac{3}{k^2}+4}}∈(1,4)$,
则$1<\frac{{{{(2-λ)}^2}}}{λ}<4$且λ>2$⇒4<λ<4+2\sqrt{3}$.
综上所述,实数λ的取值范围为$(4,4+2\sqrt{3})$.

点评 本题考查椭圆的简单性质以及这些与椭圆的位置关系的综合应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.不论角α的终边位置如何,在单位圆中作三角函数线时,下列说法正确的是(  )
A.总能分别作出正弦线、余弦线、正切线
B.总能分别作出正弦线、余弦线、正切线,但可能不只一条
C.正弦线、余弦线、正切线都可能不存在
D.正弦线、余弦线总存在,但正切线不一定存在

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,点M是双曲线E的渐近线上的一点,MF1⊥MF2,sin∠MF1F2=$\frac{1}{3}$,则该双曲线的离心率为$\frac{9}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知随机变量X+Y=10,若X~B(10,0.6),则E(Y),D(Y)分别是(  )
A.6和2.4B.4和5.6C.4和2.4D.6和5.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数$f(x)=\left\{\begin{array}{l}xlnx-3x,x>0\\{x^2}+\frac{3}{2}x,x≤0\end{array}\right.$的图象上有且只有四个不同的点关于直线y=-1的对称点在直线y=kx-1上,则实数k的取值范围是(  )
A.$({\frac{2}{7},1})$B.$({\frac{1}{3},3})$C.$({\frac{1}{2},2})$D.$({2,\frac{7}{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),过双曲线右焦点F倾斜角为$\frac{π}{4}$的直线与该双曲线的渐近线分别交于M、N.若|FM|=2|FN|,则该双曲线的离心率等于(  )
A.$\frac{\sqrt{10}}{3}$B.$\sqrt{3}$C.$\sqrt{3}$或$\frac{\sqrt{10}}{3}$D.$\frac{\sqrt{10}}{3}$或$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的前n项和Sn=$\frac{n(n+1)}{2}$,数列{bn}满足bn=an+an+1(n∈N*).
(1)求数列{bn}的通项公式;
(2)若cn=2${\;}^{{a}_{n}}$•(bn-1)(n∈N*),求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知A(-1,0),B(1,0),$\overrightarrow{AP}$=$\overrightarrow{AB}$+$\overrightarrow{AC}$,|$\overrightarrow{AP}$|+|$\overrightarrow{AC}$|=4
(1)求P的轨迹E
(2)过轨迹E上任意一点P作圆O:x2+y2=3的切线l1,l2,设直线OP,l1,l2的斜率分别是k0,k1,k2,试问在三个斜率都存在且不为0的条件下,$\frac{1}{{k}_{0}}$($\frac{1}{{k}_{1}}$+$\frac{1}{{k}_{2}}$)是否是定值,请说明理由,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若按如图所示的程序框图运行后,输出的结果是63,则判断框中的整数M的值是6.

查看答案和解析>>

同步练习册答案