精英家教网 > 高中数学 > 题目详情
6.已知随机变量X+Y=10,若X~B(10,0.6),则E(Y),D(Y)分别是(  )
A.6和2.4B.4和5.6C.4和2.4D.6和5.6

分析 先由X~B(10,0.6),得均值E(X)=6,方差D(X)=2.4,然后由X+Y=10得Y=-X+10,再根据公式求解即可.

解答 解:由题意X~B(10,0.6),知随机变量X服从二项分布,n=10,p=0.6,
则均值E(X)=np=6,方差D(X)=npq=2.4,
又∵X+Y=10,
∴Y=-X+10,
∴E(Y)=-E(X)+10=-6+10=4,
D(Y)=D(X)=2.4.
故选:C.

点评 解题关键是若两个随机变量Y,X满足一次关系式Y=aX+b(a,b为常数),当已知E(X)、D(X)时,则有E(Y)=aE(X)+b,D(Y)=a2D(X).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知$cos({α-\frac{π}{3}})=-\frac{1}{2}$,则$sin({\frac{π}{6}+α})$的值等于(  )
A.$\frac{\sqrt{3}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设f(x)=|x-b|+|x+b|.
(1)当b=1时,求f(x)≤x+2的解集;
(2)当x=1时,若不等式f(x)≥$\frac{|a+1|-|2a-1|}{|a|}$对任意实数a≠0恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知点A,B的坐标分别为(-$\sqrt{2}$,0),($\sqrt{2}$,0),直线AM,BM相交于点M,且它们的斜率之积是-$\frac{1}{2}$,点M的轨迹为曲线E.
(Ⅰ)求E的方程;
(Ⅱ)过点F(1,0)作直线l交曲线E于P,Q两点,交y轴于R点,若$\overrightarrow{RP}$=λ1$\overrightarrow{PF}$,$\overrightarrow{RQ}$=λ2$\overrightarrow{QF}$,求证:λ12为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设函数f(x)=(x-a)(x-b)(x-c)(其中a>1,b>1),x=0是f(x)的一个零点,曲线y=f(x)在点(1,f(1))处的切线平行于x轴,则a+b的最小值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.2017年是某市大力推进居民生活垃圾分类的关键一年,有关部门为宣传垃圾分类知识,面向该市市民进行了一次“垃圾分类知识”的网络问卷调查,每位市民仅有一次参与机会,通过抽样,得到参与问卷调查中的1000人的得分数据,其频率分布直方图如图所示:

(1)由频率分布直方图可以认为,此次问卷调查的得分Z服从正态分布N(μ,210),μ近似为这1000人得分的平均值(同一组数据用该区间的中点值作代表),利用该正态分布,求P(50.5<Z<94).
(2)在(1)的条件下,有关部门为此次参加问卷调查的市民制定如下奖励方案:
①得分不低于μ可获赠2次随机话费,得分低于μ则只有1次;
②每次赠送的随机话费和对应概率如下:
赠送话费(单位:元)1020
概率$\frac{2}{3}$ $\frac{1}{3}$ 
现有一位市民要参加此次问卷调查,记X(单位:元)为该市民参加问卷调查获赠的话费,求X的分布列.
附:$\sqrt{210}$≈14.5
若Z~N(μ,δ2),则P(μ-δ<Z<μ+δ)=0.6826,P(μ-2δ<Z<μ+2δ)=0.9544.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右顶点为A(2,0),左、右焦点分别为F1、F2,过点A且斜率为$\frac{1}{2}$的直线与y轴交于点P,与椭圆交于另一个点B,且点B在x轴上的射影恰好为点F1
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过点P且斜率大于$\frac{1}{2}$的直线与椭圆交于M,N两点(|PM|>|PN|),若S△PAM:S△PBN=λ,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.命题“?x>1,${(\frac{1}{2})^x}<\frac{1}{2}$”的否定是(  )
A.?x>1,${(\frac{1}{2})^x}≥\frac{1}{2}$B.?x≤1,${(\frac{1}{2})^x}≥\frac{1}{2}$C.?x0>1,${(\frac{1}{2})^{x_0}}≥\frac{1}{2}$D.?x0≤1,${(\frac{1}{2})^{x_0}}≥\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示,直角梯形ABCD两条对角线AC,BD的交点为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,M为线段AB上一点,AM=2MB,且AB⊥BC,AB∥CD,AB=BE=6,CD=BC=3.
(I)求证:EM∥平面ADF;
(Ⅱ)求二面角O-EF-C的余弦值.

查看答案和解析>>

同步练习册答案