精英家教网 > 高中数学 > 题目详情
15.命题“?x>1,${(\frac{1}{2})^x}<\frac{1}{2}$”的否定是(  )
A.?x>1,${(\frac{1}{2})^x}≥\frac{1}{2}$B.?x≤1,${(\frac{1}{2})^x}≥\frac{1}{2}$C.?x0>1,${(\frac{1}{2})^{x_0}}≥\frac{1}{2}$D.?x0≤1,${(\frac{1}{2})^{x_0}}≥\frac{1}{2}$

分析 利用全称命题的否定是特称命题,直接写出命题的否定即可.

解答 解:因为全称命题的否定是特称命题,所以命题“?x>1,${(\frac{1}{2})^x}<\frac{1}{2}$”的否定是?x0>1,${(\frac{1}{2})^{x_0}}≥\frac{1}{2}$
故选:C.

点评 本题考查命题的否定的应用.全称命题与特称命题互为否定关系,考查基本知识的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知在四棱锥P-ABCD中,底面ABCD是平行四边形,且有PB=PD,PA⊥BD.
(1)求证:平面PAC⊥平面ABCD;
(2)若∠DAB=∠PDB=60°,AD=2,PA=3,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知随机变量X+Y=10,若X~B(10,0.6),则E(Y),D(Y)分别是(  )
A.6和2.4B.4和5.6C.4和2.4D.6和5.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),过双曲线右焦点F倾斜角为$\frac{π}{4}$的直线与该双曲线的渐近线分别交于M、N.若|FM|=2|FN|,则该双曲线的离心率等于(  )
A.$\frac{\sqrt{10}}{3}$B.$\sqrt{3}$C.$\sqrt{3}$或$\frac{\sqrt{10}}{3}$D.$\frac{\sqrt{10}}{3}$或$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的前n项和Sn=$\frac{n(n+1)}{2}$,数列{bn}满足bn=an+an+1(n∈N*).
(1)求数列{bn}的通项公式;
(2)若cn=2${\;}^{{a}_{n}}$•(bn-1)(n∈N*),求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.等比数列{an}中,a1=1,前n项和为Sn,满足S7-4S6+3S5=0,则S4=40.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知A(-1,0),B(1,0),$\overrightarrow{AP}$=$\overrightarrow{AB}$+$\overrightarrow{AC}$,|$\overrightarrow{AP}$|+|$\overrightarrow{AC}$|=4
(1)求P的轨迹E
(2)过轨迹E上任意一点P作圆O:x2+y2=3的切线l1,l2,设直线OP,l1,l2的斜率分别是k0,k1,k2,试问在三个斜率都存在且不为0的条件下,$\frac{1}{{k}_{0}}$($\frac{1}{{k}_{1}}$+$\frac{1}{{k}_{2}}$)是否是定值,请说明理由,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C所对的边分别为a,b,c,已知$\overrightarrow{AB}$•$\overrightarrow{AC}$=$\overrightarrow{BA}•\overrightarrow{BC}$,sinA=$\frac{3}{5}$
(1)求sinC的值;
(2)设D为AC的中点,若BD的长为$\frac{\sqrt{153}}{2}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.将等比数列{an}的各项排成如图所示的三角形数阵,${a_1}=\frac{1}{32},q=2$,则数阵的第5行所有项之和为992

查看答案和解析>>

同步练习册答案