精英家教网 > 高中数学 > 题目详情
5.将等比数列{an}的各项排成如图所示的三角形数阵,${a_1}=\frac{1}{32},q=2$,则数阵的第5行所有项之和为992

分析 由题意可的第5行a11,a12,a13,a14,a15,再根据等比数列的前n项和公式计算即可.

解答 解:由题意可的第5行a11,a12,a13,a14,a15
∵${a_1}=\frac{1}{32},q=2$,
∴a11=$\frac{1}{32}$×210=32,
∴a11+a12+a13+a14+a15=$\frac{32(1-{2}^{5})}{1-2}$=992
故答案为:992

点评 本题考查了等比数列的前n项和公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.命题“?x>1,${(\frac{1}{2})^x}<\frac{1}{2}$”的否定是(  )
A.?x>1,${(\frac{1}{2})^x}≥\frac{1}{2}$B.?x≤1,${(\frac{1}{2})^x}≥\frac{1}{2}$C.?x0>1,${(\frac{1}{2})^{x_0}}≥\frac{1}{2}$D.?x0≤1,${(\frac{1}{2})^{x_0}}≥\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示,直角梯形ABCD两条对角线AC,BD的交点为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,M为线段AB上一点,AM=2MB,且AB⊥BC,AB∥CD,AB=BE=6,CD=BC=3.
(I)求证:EM∥平面ADF;
(Ⅱ)求二面角O-EF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.定义运算“?”:a?b=a+b-$\sqrt{ab}$(a,b为正实数).若4?k=3,则函数f(x)=$\frac{k?x}{{\sqrt{x}}}$的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.为了得到函数$y=2sin(x+\frac{π}{6})cos(x+\frac{π}{6})$的图象,只需把函数y=sin2x的图象上所有的点(  )
A.向左平行移动$\frac{π}{12}$个单位长度B.向右平行移动$\frac{π}{12}$个单位长度
C.向左平行移动$\frac{π}{6}$个单位长度D.向右平行移动$\frac{π}{6}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知等差数列{an}的前10项和为165,a4=12,则a7=(  )
A.14B.18C.21D.24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}为等差数列,且a2016+a2018=${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx,则a2017的值为(  )
A.$\frac{π}{2}$B.C.π2D.π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知i是虚数单位,则复数$\frac{1-i}{1+i}$在复平面上所对应的点的坐标是(0,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=|x+2|+|x-1|.
(1)证明:f(x)≥f(0);
(2)若?x∈R,不等式2f(x)≥f(a+1)恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案