精英家教网 > 高中数学 > 题目详情
10.已知等差数列{an}的前10项和为165,a4=12,则a7=(  )
A.14B.18C.21D.24

分析 由等差数列{an}性质可得:a1+a10=a4+a7,再利用等差数列的前n项和公式即可得出.

解答 解:由等差数列{an}性质可得:a1+a10=a4+a7
∴S10=10•$\frac{{a}_{1}+{a}_{10}}{2}$=5(a4+a7)=5(12+a7)=165,
 解得a7=21,
故选:C.

点评 本题考查了等差数列的性质与前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.等比数列{an}中,a1=1,前n项和为Sn,满足S7-4S6+3S5=0,则S4=40.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的首项为1,Sn为数列{an}的前n项和,且满足Sn+1=qSn+1,其中q>0,n∈N*,又2a2,a3,a2+2成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记bn=2an-λ(log2an+12,若数列{bn}为递增数列,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lnx-a$\frac{x-1}{x+1}$,a∈R.
(Ⅰ)讨论f(x)的单调区间;
(Ⅱ)当x≠1时,$\frac{{({x+1})lnx+2a}}{{{{({x+1})}^2}}}<\frac{lnx}{x-1}$恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.将等比数列{an}的各项排成如图所示的三角形数阵,${a_1}=\frac{1}{32},q=2$,则数阵的第5行所有项之和为992

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知a、b∈R,则“ab=1”是“直线“ax+y-l=0和直线x+by-1=0平行”的(  )
A.充分不必要条件B.充要条件
C.必要不充分条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知3sin2α=cosα,则sinα可以是(  )
A.-$\frac{1}{6}$B.$\frac{1}{6}$C.$\frac{\sqrt{35}}{6}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某服装销售公司进行关于消费档次的调查,根据每人月均服装消费额将消费档次分为0-500元;500-1000元;1000-1500元;1500-2000元四个档次,针对A,B两类人群各抽取100人的样本进行统计分析,各档次人数统计结果如下表所示:
档次
人群
0~
500元
500~
1000元
1000~
1500元
1500~
2000元
A类20502010
B类50301010
月均服装消费额不超过1000元的人群视为中低消费人群,超过1000元的视为中高收入人群.
(Ⅰ)从A类样本中任选一人,求此人属于中低消费人群的概率;
(Ⅱ)从A,B两类人群中各任选一人,分别记为甲、乙,估计甲的消费档次不低于乙的消费档次的概率;
(Ⅲ)以各消费档次的区间中点对应的数值为该档次的人均消费额,估计A,B两类人群哪类月均服装消费额的方差较大(直接写出结果,不必说明理由).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|x-5|-|x-2|.
(1)若?x∈R,使得f(x)≤m成立,求m的范围;
(2)求不等式x2-8x+15+f(x)≤0的解集.

查看答案和解析>>

同步练习册答案