精英家教网 > 高中数学 > 题目详情
1.已知数列{an}的首项为1,Sn为数列{an}的前n项和,且满足Sn+1=qSn+1,其中q>0,n∈N*,又2a2,a3,a2+2成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记bn=2an-λ(log2an+12,若数列{bn}为递增数列,求λ的取值范围.

分析 (I)根据an+1=Sn+1-Sn可得出{an}是等比数列,根据等差中项的定义列方程可求出公比q,从而得出{an}的通项公式;
(II)求出bn,令bn+1-bn>0可得λ<$\frac{{2}^{n}}{2n+1}$恒成立,求出右侧数列的最小值即可得出λ的范围.

解答 解:(I)∵Sn+1=qSn+1,∴当n≥2时,Sn=qSn-1+1,
∴an+1=Sn+1-Sn=qSn-qSn-1=qan
又S2=qS1+1,a1=S1=1,
∴a2=q=qa1
∴数列{an}是首项为1,公比为1的等比数列,
∵2a2,a3,a2+2成等差数列,
∴2a3=2a2+a2+2=3a2+2,
即2q2=3q+2,解得q=2或q=-$\frac{1}{2}$(舍).
∴an=2n-1
(II)bn=2n-λn2
∴bn+1-bn=2n+1-λ(n+1)2-2n+λn2=2n-2nλ-λ,
∵数列{bn}为递增数列,
∴2n-2nλ-λ>0恒成立,即λ<$\frac{{2}^{n}}{2n+1}$恒成立,
令cn=$\frac{{2}^{n}}{2n+1}$,则cn+1-cn=$\frac{{2}^{n+1}}{2n+3}$-$\frac{{2}^{n}}{2n+1}$=2n($\frac{2}{2n+3}-\frac{1}{2n+1}$)=2n$\frac{2n-1}{(2n+3)(2n+1)}$>0,
∴{cn}是递增数列,
∴cn≥c1=$\frac{2}{3}$,
∴λ<$\frac{2}{3}$.

点评 本题考查了等比数列的性质,数列单调性的判断,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.2017年是某市大力推进居民生活垃圾分类的关键一年,有关部门为宣传垃圾分类知识,面向该市市民进行了一次“垃圾分类知识”的网络问卷调查,每位市民仅有一次参与机会,通过抽样,得到参与问卷调查中的1000人的得分数据,其频率分布直方图如图所示:

(1)由频率分布直方图可以认为,此次问卷调查的得分Z服从正态分布N(μ,210),μ近似为这1000人得分的平均值(同一组数据用该区间的中点值作代表),利用该正态分布,求P(50.5<Z<94).
(2)在(1)的条件下,有关部门为此次参加问卷调查的市民制定如下奖励方案:
①得分不低于μ可获赠2次随机话费,得分低于μ则只有1次;
②每次赠送的随机话费和对应概率如下:
赠送话费(单位:元)1020
概率$\frac{2}{3}$ $\frac{1}{3}$ 
现有一位市民要参加此次问卷调查,记X(单位:元)为该市民参加问卷调查获赠的话费,求X的分布列.
附:$\sqrt{210}$≈14.5
若Z~N(μ,δ2),则P(μ-δ<Z<μ+δ)=0.6826,P(μ-2δ<Z<μ+2δ)=0.9544.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设全集U=R,集合A={y|y=x2-2},B={x|y=log2(3-x),则(∁UA)∩B=(  )
A.{x|-2≤x<3}B.{x|x≤-2}C.{x|x<-2}D.{x|x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.据统计,目前微信用户已达10亿,2016年,诸多传统企业大佬纷纷尝试进入微商渠道,让这个行业不断地走向正规化、规范化.2017年3月25日,第五届中国微商博览会在山东济南舜耕国际会展中心召开,力争为中国微商产业转型升级.某品牌饮料公司对微商销售情况进行中期调研,从某地区随机抽取6家微商一周的销售金额(单位:百元)的茎叶图如图所示,其中茎为十位数,叶为个位数.
(Ⅰ)若销售金额(单位:万元)不低于平均值$\overline x$的微商定义为优秀微商,其余为非优秀微商,根据茎叶图推断该地区110家微商中有几家优秀?
(Ⅱ)从随机抽取的6家微商中再任取2家举行消费者回访调查活动,求恰有1家是优秀微商的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示,直角梯形ABCD两条对角线AC,BD的交点为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,M为线段AB上一点,AM=2MB,且AB⊥BC,AB∥CD,AB=BE=6,CD=BC=3.
(I)求证:EM∥平面ADF;
(Ⅱ)求二面角O-EF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知奇函数f(x)=$\left\{\begin{array}{l}{3^x}-a,({x≥0})\\ g(x),({x<0})\end{array}$,则f(-2)的值为-8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.定义运算“?”:a?b=a+b-$\sqrt{ab}$(a,b为正实数).若4?k=3,则函数f(x)=$\frac{k?x}{{\sqrt{x}}}$的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知等差数列{an}的前10项和为165,a4=12,则a7=(  )
A.14B.18C.21D.24

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.大厦一层有A,B,C,D四部电梯,3人在一层乘坐电梯上楼,其中2人恰好乘坐同一部电梯,则不同的乘坐方式有36种.(用数字作答)

查看答案和解析>>

同步练习册答案