精英家教网 > 高中数学 > 题目详情
13.定义运算“?”:a?b=a+b-$\sqrt{ab}$(a,b为正实数).若4?k=3,则函数f(x)=$\frac{k?x}{{\sqrt{x}}}$的最小值为1.

分析 先利用新定义运算解方程4?k=3,得k的值,再利用基本不等式求函数f(x)的最小值即可.

解答 解:依题意,4?k=4+k-2$\sqrt{k}$=3,解得k=1,
此时,函数f(x)=$\frac{k?x}{{\sqrt{x}}}$=$\frac{k+x-\sqrt{kx}}{\sqrt{x}}$=$\frac{1+x-\sqrt{x}}{\sqrt{x}}$=$\frac{1}{\sqrt{x}}$+$\sqrt{x}$-1≥2$\sqrt{\sqrt{x}•\frac{1}{\sqrt{x}}}$-1=2-1=1.
当且仅当x=1时取得最小值1.
故答案为:1.

点评 本题主要考查了对新定义运算的理解,均值定理求最值的方法,特别注意均值定理求最值时等号成立的条件,避免出错,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),过双曲线右焦点F倾斜角为$\frac{π}{4}$的直线与该双曲线的渐近线分别交于M、N.若|FM|=2|FN|,则该双曲线的离心率等于(  )
A.$\frac{\sqrt{10}}{3}$B.$\sqrt{3}$C.$\sqrt{3}$或$\frac{\sqrt{10}}{3}$D.$\frac{\sqrt{10}}{3}$或$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C所对的边分别为a,b,c,已知$\overrightarrow{AB}$•$\overrightarrow{AC}$=$\overrightarrow{BA}•\overrightarrow{BC}$,sinA=$\frac{3}{5}$
(1)求sinC的值;
(2)设D为AC的中点,若BD的长为$\frac{\sqrt{153}}{2}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的首项为1,Sn为数列{an}的前n项和,且满足Sn+1=qSn+1,其中q>0,n∈N*,又2a2,a3,a2+2成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记bn=2an-λ(log2an+12,若数列{bn}为递增数列,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若按如图所示的程序框图运行后,输出的结果是63,则判断框中的整数M的值是6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lnx-a$\frac{x-1}{x+1}$,a∈R.
(Ⅰ)讨论f(x)的单调区间;
(Ⅱ)当x≠1时,$\frac{{({x+1})lnx+2a}}{{{{({x+1})}^2}}}<\frac{lnx}{x-1}$恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.将等比数列{an}的各项排成如图所示的三角形数阵,${a_1}=\frac{1}{32},q=2$,则数阵的第5行所有项之和为992

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知3sin2α=cosα,则sinα可以是(  )
A.-$\frac{1}{6}$B.$\frac{1}{6}$C.$\frac{\sqrt{35}}{6}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow{a}$=(x,1),$\overrightarrow{b}$=(4,2),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$•($\overrightarrow{b}$-$\overrightarrow{a}$)等于(  )
A.5B.10C.-$\frac{5}{4}$D.-5

查看答案和解析>>

同步练习册答案