精英家教网 > 高中数学 > 题目详情
17.设f(x)=|x-b|+|x+b|.
(1)当b=1时,求f(x)≤x+2的解集;
(2)当x=1时,若不等式f(x)≥$\frac{|a+1|-|2a-1|}{|a|}$对任意实数a≠0恒成立,求实数b的取值范围.

分析 (1)运用绝对值的含义,对x讨论,分x≥1,-1<x<1,x≤-1,去掉绝对值,得到不等式组,解出它们,再求并集即可得到解集;
(2)运用绝对值不等式的性质,可得不等式右边的最大值为3,再由不等式恒成立思想可得f(b)≥3,再由去绝对值的方法,即可解得b的范围.

解答 解:(1)当b=1时,f(x)=|x-1|+|x+1|,
由f(x)≤x+2得:
$\left\{\begin{array}{l}{x≥1}\\{x-1+x+1≤x+2}\end{array}\right.$或$\left\{\begin{array}{l}{-1<x<1}\\{1-x+x+1≤x+2}\end{array}\right.$或$\left\{\begin{array}{l}{x≤-1}\\{1-x-x-1≤x+2}\end{array}\right.$,
即有1≤x≤2或0≤x<1或x∈∅,
解得0≤x≤2,
所以f(x)≤x+2的解集为[0,2];                       
(2)$\frac{|a+1|-|2a-1|}{|a|}$=|1+$\frac{1}{a}$|-|2-$\frac{1}{a}$|≤|1+$\frac{1}{a}$+2-$\frac{1}{a}$|=3,
当且仅当(1+$\frac{1}{a}$)(2-$\frac{1}{a}$)≤0时,取等号.
由不等式f(x)≥$\frac{|a+1|-|2a-1|}{|a|}$对任意实数a≠0恒成立,
由于x=1,可得|1-b|+|1+b|≥3,
即$\left\{\begin{array}{l}{b≥1}\\{b-1+b+1≥3}\end{array}\right.$或$\left\{\begin{array}{l}{-1<b<1}\\{1-b+b+1≥3}\end{array}\right.$或$\left\{\begin{array}{l}{b≤-1}\\{1-b-b-1≥3}\end{array}\right.$,
解得:$b≤-\frac{3}{2}$或$b≥\frac{3}{2}$.
故实数b的取值范围是$(-∞,-\frac{3}{2}]∪[\frac{3}{2},+∞)$.

点评 本题考查绝对值不等式的解法,同时考查不等式恒成立问题的求法,运用分类讨论的思想方法和绝对值不等式的性质是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.若集合A={x|x(x-1)<2},且A∪B=A,则集合B可能是(  )
A.{-1,2}B.{0,1}C.{-1,0}D.{0,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.不论角α的终边位置如何,在单位圆中作三角函数线时,下列说法正确的是(  )
A.总能分别作出正弦线、余弦线、正切线
B.总能分别作出正弦线、余弦线、正切线,但可能不只一条
C.正弦线、余弦线、正切线都可能不存在
D.正弦线、余弦线总存在,但正切线不一定存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知在四棱锥P-ABCD中,底面ABCD是平行四边形,且有PB=PD,PA⊥BD.
(1)求证:平面PAC⊥平面ABCD;
(2)若∠DAB=∠PDB=60°,AD=2,PA=3,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.学校为了了解高三学生每天自主学习中国古典文学的时间,随机抽取了高三男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如表:
古文迷非古文迷合计
男生262450
女生302050
合计5644100
(Ⅰ)根据表中数据能否判断有60%的把握认为“古文迷”与性别有关?
(Ⅱ)现从调查的女生中按分层抽样的方法抽出5人进行调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;
(Ⅲ)现从(Ⅱ)中所抽取的5人中再随机抽取3人进行调查,记这3人中“古文迷”的人数为ξ,求随机变量ξ的分布列与数学期望.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.500.400.250.050.0250.010
k00.4550.7081.3213.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某班级的54名学生编号为:1,2,3,…,54,为了采集同学们的身高信息,先采用系统抽样的方法抽取一个容量为6的样本,已知样本中含有编号为5号、23号和41号的学生,则样本中剩余三名同学的编号分别为14,32,50.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,点M是双曲线E的渐近线上的一点,MF1⊥MF2,sin∠MF1F2=$\frac{1}{3}$,则该双曲线的离心率为$\frac{9}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知随机变量X+Y=10,若X~B(10,0.6),则E(Y),D(Y)分别是(  )
A.6和2.4B.4和5.6C.4和2.4D.6和5.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知A(-1,0),B(1,0),$\overrightarrow{AP}$=$\overrightarrow{AB}$+$\overrightarrow{AC}$,|$\overrightarrow{AP}$|+|$\overrightarrow{AC}$|=4
(1)求P的轨迹E
(2)过轨迹E上任意一点P作圆O:x2+y2=3的切线l1,l2,设直线OP,l1,l2的斜率分别是k0,k1,k2,试问在三个斜率都存在且不为0的条件下,$\frac{1}{{k}_{0}}$($\frac{1}{{k}_{1}}$+$\frac{1}{{k}_{2}}$)是否是定值,请说明理由,并加以证明.

查看答案和解析>>

同步练习册答案