分析 (1)运用绝对值的含义,对x讨论,分x≥1,-1<x<1,x≤-1,去掉绝对值,得到不等式组,解出它们,再求并集即可得到解集;
(2)运用绝对值不等式的性质,可得不等式右边的最大值为3,再由不等式恒成立思想可得f(b)≥3,再由去绝对值的方法,即可解得b的范围.
解答 解:(1)当b=1时,f(x)=|x-1|+|x+1|,
由f(x)≤x+2得:
$\left\{\begin{array}{l}{x≥1}\\{x-1+x+1≤x+2}\end{array}\right.$或$\left\{\begin{array}{l}{-1<x<1}\\{1-x+x+1≤x+2}\end{array}\right.$或$\left\{\begin{array}{l}{x≤-1}\\{1-x-x-1≤x+2}\end{array}\right.$,
即有1≤x≤2或0≤x<1或x∈∅,
解得0≤x≤2,
所以f(x)≤x+2的解集为[0,2];
(2)$\frac{|a+1|-|2a-1|}{|a|}$=|1+$\frac{1}{a}$|-|2-$\frac{1}{a}$|≤|1+$\frac{1}{a}$+2-$\frac{1}{a}$|=3,
当且仅当(1+$\frac{1}{a}$)(2-$\frac{1}{a}$)≤0时,取等号.
由不等式f(x)≥$\frac{|a+1|-|2a-1|}{|a|}$对任意实数a≠0恒成立,
由于x=1,可得|1-b|+|1+b|≥3,
即$\left\{\begin{array}{l}{b≥1}\\{b-1+b+1≥3}\end{array}\right.$或$\left\{\begin{array}{l}{-1<b<1}\\{1-b+b+1≥3}\end{array}\right.$或$\left\{\begin{array}{l}{b≤-1}\\{1-b-b-1≥3}\end{array}\right.$,
解得:$b≤-\frac{3}{2}$或$b≥\frac{3}{2}$.
故实数b的取值范围是$(-∞,-\frac{3}{2}]∪[\frac{3}{2},+∞)$.
点评 本题考查绝对值不等式的解法,同时考查不等式恒成立问题的求法,运用分类讨论的思想方法和绝对值不等式的性质是解题的关键.
科目:高中数学 来源: 题型:选择题
| A. | 总能分别作出正弦线、余弦线、正切线 | |
| B. | 总能分别作出正弦线、余弦线、正切线,但可能不只一条 | |
| C. | 正弦线、余弦线、正切线都可能不存在 | |
| D. | 正弦线、余弦线总存在,但正切线不一定存在 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 古文迷 | 非古文迷 | 合计 | |
| 男生 | 26 | 24 | 50 |
| 女生 | 30 | 20 | 50 |
| 合计 | 56 | 44 | 100 |
| P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 |
| k0 | 0.455 | 0.708 | 1.321 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6和2.4 | B. | 4和5.6 | C. | 4和2.4 | D. | 6和5.6 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com