精英家教网 > 高中数学 > 题目详情
2.某班级的54名学生编号为:1,2,3,…,54,为了采集同学们的身高信息,先采用系统抽样的方法抽取一个容量为6的样本,已知样本中含有编号为5号、23号和41号的学生,则样本中剩余三名同学的编号分别为14,32,50.

分析 根据系统抽样的定义,求出样本间距为9,即可得到结论.

解答 解:根据系统抽样的定义抽样间距为9,
则6个样本编号从小到大构成以9为公差的等差数列,
则样本中剩余三名同学的编号分别为14,32,50,
故答案为:14,32,50

点评 本题主要考查系统抽样的应用,求出样本间距是解决本题的关键,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设双曲线$\frac{y^2}{a^2}-\frac{x^2}{b^2}$=1(a>0,b>0)的离心率是3,则其渐近线的方程为(  )
A.$x±2\sqrt{2}y=0$B.$2\sqrt{2}x±y=0$C.x±8y=0D.8x±y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知θ∈[0,π),若对任意的x∈[-1,0].不等式x2cosθ+(x+1)2sinθ+x2+x>0恒成立,则实数θ的取值范围是(  )
A.($\frac{π}{12}$,$\frac{5π}{12}$)B.($\frac{π}{6}$,$\frac{π}{4}$)C.($\frac{π}{4}$,$\frac{3π}{4}$)D.($\frac{π}{6}$,$\frac{5π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如果函数y=f(x)的定义域为R,且存在实常数a,使得对于定义域内任意x,都有f(x+a)=f(-x)成立,则称此函数f(x)具有“P(a)性质”.
(1)判断函数y=cosx是否具有“P(a)性质”,若具有“P(a)性质”,求出所有a的值的集合;若不具有“P(a)性质”,请说明理由;
(2)已知函数y=f(x)具有“P(0)性质”,且当x≤0时,f(x)=(x+m)2,求函数y=f(x)在区间[0,1]上的值域;
(3)已知函数y=g(x)既具有“P(0)性质”,又具有“P(2)性质”,且当-1≤x≤1时,g(x)=|x|,若函数y=g(x)的图象与直线y=px有2017个公共点,求实数p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设f(x)=|x-b|+|x+b|.
(1)当b=1时,求f(x)≤x+2的解集;
(2)当x=1时,若不等式f(x)≥$\frac{|a+1|-|2a-1|}{|a|}$对任意实数a≠0恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数$f(x)=\frac{{{e^x}-1}}{x}$,
(1)求f(x)在x=1处的切线方程;
(2)证明:对任意a>0,当0<|x|<ln(1+a)时,|f(x)-1|<a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知点A,B的坐标分别为(-$\sqrt{2}$,0),($\sqrt{2}$,0),直线AM,BM相交于点M,且它们的斜率之积是-$\frac{1}{2}$,点M的轨迹为曲线E.
(Ⅰ)求E的方程;
(Ⅱ)过点F(1,0)作直线l交曲线E于P,Q两点,交y轴于R点,若$\overrightarrow{RP}$=λ1$\overrightarrow{PF}$,$\overrightarrow{RQ}$=λ2$\overrightarrow{QF}$,求证:λ12为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.2017年是某市大力推进居民生活垃圾分类的关键一年,有关部门为宣传垃圾分类知识,面向该市市民进行了一次“垃圾分类知识”的网络问卷调查,每位市民仅有一次参与机会,通过抽样,得到参与问卷调查中的1000人的得分数据,其频率分布直方图如图所示:

(1)由频率分布直方图可以认为,此次问卷调查的得分Z服从正态分布N(μ,210),μ近似为这1000人得分的平均值(同一组数据用该区间的中点值作代表),利用该正态分布,求P(50.5<Z<94).
(2)在(1)的条件下,有关部门为此次参加问卷调查的市民制定如下奖励方案:
①得分不低于μ可获赠2次随机话费,得分低于μ则只有1次;
②每次赠送的随机话费和对应概率如下:
赠送话费(单位:元)1020
概率$\frac{2}{3}$ $\frac{1}{3}$ 
现有一位市民要参加此次问卷调查,记X(单位:元)为该市民参加问卷调查获赠的话费,求X的分布列.
附:$\sqrt{210}$≈14.5
若Z~N(μ,δ2),则P(μ-δ<Z<μ+δ)=0.6826,P(μ-2δ<Z<μ+2δ)=0.9544.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设全集U=R,集合A={y|y=x2-2},B={x|y=log2(3-x),则(∁UA)∩B=(  )
A.{x|-2≤x<3}B.{x|x≤-2}C.{x|x<-2}D.{x|x<3}

查看答案和解析>>

同步练习册答案