如图,在轴上方有一段曲线弧,其端点、在轴上(但不属于),对上任一点及点,,满足:.直线,分别交直线于,两点.
(Ⅰ)求曲线弧的方程;
(Ⅱ)求的最小值(用表示);
(I).(II).
解析试题分析:(I)由椭圆的定义,曲线是以,为焦点的半椭圆,
利用的关系,得到的方程为.
要特别注意有限制.
(II)设并代入椭圆方程得到,根据,,可以得到直线的方程,进一步令可得,的纵坐标分别,将用纵坐标表出,应用“基本不等式”,得到其最小值.
本解答即体现此类问题的一般解法“设而不求”,又反映数学知识的灵活应用.
试题解析:(I)由椭圆的定义,曲线是以,为焦点的半椭圆,
.
∴的方程为. 4分
(注:不写区间“”扣1分)
(II)由(I)知,曲线的方程为,设,
则有,即 ①
又,,从而直线的方程为
AP:; BP: 6分
令得,的纵坐标分别为
; .
∴② 将①代入②, 得. 8分
∴.
当且仅当,即时,取等号.
即的最小值是. 12分
考点:椭圆的定义,直线与椭圆的位置关系,基本不等式的应用.
科目:高中数学 来源: 题型:解答题
已知椭圆,、是其左右焦点,离心率为,且经过点.
(1)求椭圆的标准方程;
(2)若、分别是椭圆长轴的左右端点,为椭圆上动点,设直线斜率为,且,求直线斜率的取值范围;
(3)若为椭圆上动点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的焦点坐标为,过的直线交抛物线于两点,直线分别与直线:相交于两点.
(1)求抛物线的方程;
(2)证明△ABO与△MNO的面积之比为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的中心为原点,长轴长为,一条准线的方程为.
(Ⅰ)求该椭圆的标准方程;
(Ⅱ)射线与椭圆的交点为,过作倾斜角互补的两条直线,分别与椭圆交于 两点(两点异于).求证:直线的斜率为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线与双曲线有公共焦点,点是曲线在第一象限的交点,且.
(Ⅰ)求双曲线的方程;
(Ⅱ)以双曲线的另一焦点为圆心的圆与直线相切,圆:.过点作互相垂直且分别与圆、圆相交的直线和,设被圆截得的弦长为,被圆截得的弦长为,问:是否为定值?如果是,请求出这个定值;如果不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com