已知抛物线的焦点坐标为,过的直线交抛物线于两点,直线分别与直线:相交于两点.
(1)求抛物线的方程;
(2)证明△ABO与△MNO的面积之比为定值.
(1);(2)证明过程详见解析.
解析试题分析:本题主要考查抛物线、直线的方程,以及直线与抛物线的位置关系,突出解析几何的基本思想和方法的考查:如数形结合思想、坐标化方法等.第一问,利用抛物线的标准方程,利用焦点坐标求出,代入即可;第二问,讨论直线垂直和不垂直轴2种情况,当直线垂直于轴时,2个三角形相似,面积比为定值,当直线不垂直于轴时,设出直线的方程,设出四个点坐标,利用直线与抛物线相交列出方程组,消参得到方程,利用两根之积得为定值,而面积比值与有关,所以也为定值.
试题解析:(1)由焦点坐标为 可知
所以,所以抛物线的方程为 5分
(2)当直线垂直于轴时,与相似,
所以, 7分
当直线与轴不垂直时,设直线AB方程为,
设,,,,
解 整理得, 9分
所以, 10分
,
综上 12分
考点:1.抛物线的标准方程;2.直线方程;3.根与系数关系;4.三角形面积公式.
科目:高中数学 来源: 题型:解答题
已知椭圆C:的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.
(1)求椭圆的方程;
(2)若过点(2,0)的直线与椭圆相交于两点,设为椭圆上一点,且满足(为坐标原点),当 时,求实数取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆以坐标轴为对称轴,且经过点、.记其上顶点为,右顶点为.
(1)求圆心在线段上,且与坐标轴相切于椭圆焦点的圆的方程;
(2)在椭圆位于第一象限的弧上求一点,使的面积最大.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知圆心坐标为的圆与轴及直线均相切,切点分别为、,另一圆与圆、轴及直线均相切,切点分别为、.
(1)求圆和圆的方程;
(2)过点作的平行线,求直线被圆截得的弦的长度;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在轴上方有一段曲线弧,其端点、在轴上(但不属于),对上任一点及点,,满足:.直线,分别交直线于,两点.
(Ⅰ)求曲线弧的方程;
(Ⅱ)求的最小值(用表示);
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
点P是椭圆外的任意一点,过点P的直线PA、PB分别与椭圆相切于A、B两点。
(1)若点P的坐标为,求直线的方程。
(2)设椭圆的左焦点为F,请问:当点P运动时,是否总是相等?若是,请给出证明。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com