椭圆以坐标轴为对称轴,且经过点、.记其上顶点为,右顶点为.
(1)求圆心在线段上,且与坐标轴相切于椭圆焦点的圆的方程;
(2)在椭圆位于第一象限的弧上求一点,使的面积最大.
(1)圆的方程为;
(2)当点的坐标为,的面积最大.
解析试题分析:(1)先将椭圆的方程为,利用待定系数法求出椭圆的方程,并求出椭圆的焦点坐标,利用圆与坐标轴相切于焦点,且圆心在线段上,从而求出圆心的坐标以及圆的半径,进而求出圆的方程;(2)法一是根据参数方程法假设点的坐标,并计算出点到线段的距离和线段的长度,然后以为底边,为的高计算的面积的代数式,并根据代数式求出的面积的最大值并确定点的坐标;法二是利用的面积取最大值时,点处的切线与线段平行,将切线与椭圆的方程联立,利用确定切线的方程,进而求出点的坐标.
试题解析:(1)设椭圆的方程为,则有,解得,
故椭圆的方程为,故上顶点,右顶点,
则线段的方程为,即,
由于圆与坐标轴相切于椭圆的焦点,且椭圆的左焦点为,右焦点为,
若圆与坐标轴相切于点,则圆心在直线上,此时直线与线段无交点,
若圆与坐标轴相切于点,则圆心在直线上,联立,解得,
即圆的圆心坐标为,半径长为,
故圆的方程为;
(2)法一:设点的坐标为,且,
点到线段的距离
,
,则,故,故,
,而,
则,
故当时,即当时,的面积取到最大值为,
此时点的坐标为;
法二:设与平行的直线为,
当此直线与椭圆相切于第一象限时,切点即所求点,
由得:①
令①中,有:,
又直线过第一象限,故,解得,
此时由①有,
代入椭圆方程,取,解得.故.
考点:1.椭圆的方程;2.圆的方程;3.三角形的面积
科目:高中数学 来源: 题型:解答题
如图所示,已知圆为圆上一动点,点是线段的垂直平分线与直线的交点.
(1)求点的轨迹曲线的方程;
(2)设点是曲线上任意一点,写出曲线在点处的切线的方程;(不要求证明)
(3)直线过切点与直线垂直,点关于直线的对称点为,证明:直线恒过一定点,并求定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆,、是其左右焦点,离心率为,且经过点.
(1)求椭圆的标准方程;
(2)若、分别是椭圆长轴的左右端点,为椭圆上动点,设直线斜率为,且,求直线斜率的取值范围;
(3)若为椭圆上动点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,已知椭圆的左焦点为,且椭圆的离心率.
(1)求椭圆的方程;
(2)设椭圆的上下顶点分别为,是椭圆上异于的任一点,直线分别交轴于点,证明:为定值,并求出该定值;
(3)在椭圆上,是否存在点,使得直线与圆相交于不同的两点,且的面积最大?若存在,求出点的坐标及对应的的面积;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
知椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为,直线l的方程为:
(Ⅰ)求椭圆的方程;
(Ⅱ)已知直线l与椭圆相交于、两点
①若线段中点的横坐标为,求斜率的值;
②已知点,求证:为定值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,点为动点,、分别为椭圆的左、右焦点.已知为等腰三角形.
(1)求椭圆的离心率;
(2)设直线与椭圆相交于、两点,是直线上的点,满足,求点的轨迹
方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的焦点坐标为,过的直线交抛物线于两点,直线分别与直线:相交于两点.
(1)求抛物线的方程;
(2)证明△ABO与△MNO的面积之比为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的中心为原点,长轴长为,一条准线的方程为.
(Ⅰ)求该椭圆的标准方程;
(Ⅱ)射线与椭圆的交点为,过作倾斜角互补的两条直线,分别与椭圆交于 两点(两点异于).求证:直线的斜率为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com