精英家教网 > 高中数学 > 题目详情
15.已知数列{an}是首项a1=4的等比数列,其前n项和为Sn,且S3,S2,S4成等差数列.
(1)求数列{an}的通项公式;
(2)若bn=log2|an|(n≥1,n∈N),设Tn为数列{$\frac{1}{n({b}_{n}-1)}$}的前n项和,求证:Tn<2.

分析 (1)利用已知结合等比数列的求和公式,分q=1和q≠1两种情况进行求解;
(2)先写出bn的表达式,进而求出$\frac{1}{n({b}_{n}-1)}$的表达式,观察其结构,可利用裂项法求出其前n项和Tn,最后利用放缩法即可证得数列不等式.

解答 (1)解:设数列{an}的公比为q,又a1=4,
若q=1,则S3=12,S2=8,S4=16,
显然S3,S2,S4不成等差数列,与题设条件矛盾,∴q≠1,
由S3,S2,S4成等差数列,得2(4+4q)=(4+4q+4q2)+(4+4q+4q2+4q3),
化简得q2+q-2=0,∴q=-2,或q=1(舍去),
∴an=4(-2)n-1=(-2)n+1
(2)bn=log2|an|=log2|(-2)n+1|=n+1,
当n≥2时,$\frac{1}{n({b}_{n}-1)}$=$\frac{1}{n(n+1-1)}=\frac{1}{{n}^{2}}$<$\frac{1}{n(n-1)}=\frac{1}{n-1}-\frac{1}{n}$,
Tn<$\frac{1}{{1}^{2}}+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n-1}-\frac{1}{n}$=$2-\frac{1}{n}<2$.

点评 本题主要考查等比数列知识的应用和数列求和的方法,也考查了不等式的知识,考查了学生的推理论证能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.关于x的方程x2+2(m+3)x+2m+14=0.
(1)有两个小于1的实根,求m的取值范围;
(2)有两个大于0的实根,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某夏令营有48人,出发前要从A,B两种型号的帐篷中选择一种,A型号的帐篷比B型号少5顶,若只选A型号的,每顶帐篷住4人,则帐篷不够,每顶帐篷住5人,则有一顶帐篷没有住满,若只选B型号的,每顶帐篷住3人,则帐篷不够,每顶帐篷住4人,则有帐篷多余,设A型号的帐篷有x顶,用不等式将题目中的不等关系表示出来.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{{b}^{2}}$=1(0<b<$\sqrt{2}$),斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,向量$\overrightarrow{OA}$+$\overrightarrow{OB}$与向量$\overrightarrow{a}$=(2,-1)共线.
(Ⅰ)求b;
(Ⅱ)点P(x0,y0)在椭圆上移动(直线AB不过点P),且直线PA、PB分别与直线l:x=2相交,交点记为M、N,试问M、N两点的纵坐标之积是否为定值?若是,求出该定值;若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)=$\frac{tanx}{xco{s}^{2}x}$,当x∈(0,$\frac{π}{2}$)时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=2(a+1)lnx-ax,g(x)=$\frac{1}{2}$x2-x.
(1)若函数f(x)在定义域内为单调函数,求实数a的取值范围;
(2)证明:若-1<a<7,则对于任意x1、x2∈(1,+∞),x1≠x2,有$\frac{f({x}_{1})-f({x}_{2})}{g({x}_{1})-g({x}_{2})}$>-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|2x+a|+x.
(1)当a=-2时,求不等式f(x)≤2x+1的解集;
(2)若f(x)≤|x+3|的解集包含[1,2],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.从集合A={a,b,c,d}到集合B={1,2,3,4}可建立不同映射,则建立的映射是一一映射的概率为(  )
A.$\frac{3}{16}$B.$\frac{5}{8}$C.$\frac{3}{32}$D.$\frac{5}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设(2x-i)5=a0+a1x+a2x2+…+a5x5(i是虚数单位),则|a0|+|a1|+…+|a5|=243.

查看答案和解析>>

同步练习册答案