精英家教网 > 高中数学 > 题目详情
10.已知f(x)=$\frac{tanx}{xco{s}^{2}x}$,当x∈(0,$\frac{π}{2}$)时,求f(x)的值域.

分析 首先根据函数的关系式求出函数的图象的特点,关于y轴对称,进一步利用关系式的极限求出结果.

解答 解:函数f(x)=$\frac{tanx}{xco{s}^{2}x}$为偶函数,
所以函数的图象关于y轴对称,
则:当$\lim_{x→0}\frac{tanx}{xco{s}^{2}x}=0$,$\lim_{x→\frac{π}{2}}\frac{tanx}{xco{s}^{2}x}=+∞$,
所以:函数的值域为:(0,+∞).

点评 本题考查的知识要点:利用极限求三角函数的值域,主要考查学生的应用能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.(1+x+x2+x34的展开式中,奇次项系数和是(  )
A.64B.128C.120D.256

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.奇函数f(x)是R上的减函数,且f(x2-4x+4)+f(y2+4y)≥0,则x2+y2的最小值是12-8$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=2x3与矩形框围成图如图,已知阴影部分的面积为1,则实数a的值为(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上的点P到左、右两焦点F1,F2的距离之和为2$\sqrt{2}$,离心率为$\frac{{\sqrt{2}}}{2}$.
(Ⅰ)求椭圆的方程;
(Ⅱ)过右焦点F2的直线l交椭圆于A、B两点.
(1)若y轴上一点$M(0,\frac{1}{3})$满足|MA|=|MB|,求直线l斜率k的值;
(2)是否存在这样的直线l,使S△ABO的最大值为$\frac{{\sqrt{2}}}{2}$(其中O为坐标原点)?若存在,求直线l方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}是首项a1=4的等比数列,其前n项和为Sn,且S3,S2,S4成等差数列.
(1)求数列{an}的通项公式;
(2)若bn=log2|an|(n≥1,n∈N),设Tn为数列{$\frac{1}{n({b}_{n}-1)}$}的前n项和,求证:Tn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.数列{an}中,an+1=2an+3,a1=1,数列{bn}满足b1=1,bn+1=1+bn(n∈N*
(1)求数列{an}的通项公式;
(2)求数列{bn}的通项公式;
(3)若cn=an+3,求数列{cn•bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求两条渐近线为x±2y=0且截直线x-y-3=0所得弦长为$\frac{8\sqrt{3}}{3}$的双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=lnx-a(x-1),g(x)=ex,其中e为自然对数的底数.
(Ⅰ)设h(x)=f(x+1)+g(x).当x≥0时,h(x)≥1,求实数a的取值范围;
(Ⅱ)过原点分别作曲线y=f(x)与y=g(x)的切线l1,l2已知两切线的斜率互为倒数,求证:a=0或$\frac{e-1}{e}$<a<$\frac{{e}^{2}-1}{e}$.

查看答案和解析>>

同步练习册答案