精英家教网 > 高中数学 > 题目详情
过两条异面直线中的一条且平行于另一条的平面有______个.
由于两条直线是异面直线,
则只能作出1个平面平行于另一条直线;
如图:异面直线a、b,过b上任一点作a的平行线c
则相交直线b、c确定一个平面,
且与a平行.
故答案为:1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

在直角坐标系xOy中,设A(2,2),B(-2,-3),沿y轴把坐标平面折成120°的二面角后,AB的长是(  )
A.
35
B.6C.3
5
D.
53

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PD垂直于底面ABCD,底面ABCD是直角梯形,DCAB,∠BAD=90°,且AB=2AD=2DC=2PD=4,E为PA的中点.
(1)如图,若正视方向与AD平行,请在下面(答题区)方框内作出该几何体的正视图并求出正视图面积;
(2)证明:DE平面PBC;
(3)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如下的三个图中,左面的是一个长方体截去一个角所得多面体的直观图,它的主视图和左视图在右面画出(单位:cm).(1)按照给出的尺寸,求该多面体的体积;(2)在所给直观图中连结BC′,证明:BC′面EFG.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=
2
,AA′=1,点M,N分别为A′B和B′C′的中点.
(Ⅰ)证明:MN平面A′ACC′;
(Ⅱ)求三棱锥A′-MNC的体积.
(椎体体积公式V=
1
3
Sh,其中S为地面面积,h为高)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形,
(Ⅰ)求证:MD平面APC;
(Ⅱ)求证:平面ABC⊥平面APC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知边长都为1正方形ABCD与正方形ABEF,∠DAF=90°,M,N分别是对角线AC和BF上的点,且AM=FN=a(0<a<
2
)

(1)求证:MN平面BCE;
(2)求MN的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点.求证:
(1)BD1平面EAC;
(2)平面EAC⊥平面AB1C.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设平面α平面β,A,C∈α,B,D∈β,直线AB与CD交于点S,且点S位于平面α,β之间,AS=8,BS=6,CS=12,则SD=______.

查看答案和解析>>

同步练习册答案